
Learning Similarity Metrics for Volumetric
Simulations with Multiscale CNNs

Georg Kohl
Department of Informatics

Technical University of Munich
Munich, Germany

georg.kohl@tum.de

Li-Wei Chen
Department of Informatics

Technical University of Munich
Munich, Germany
liwei.chen

Nils Thuerey
Department of Informatics

Technical University of Munich
Munich, Germany

nils.thuerey@tum.de

Abstract

We propose a similarity model based on entropy, which allows for the creation of
physically meaningful ground truth distances for the similarity assessment of scalar
and vectorial data, produced from transport and motion-based simulations. Utiliz-
ing two data acquisition methods derived from this model, we create collections
of fields from numerical PDE solvers and existing simulation data repositories.
Furthermore, a multiscale CNN architecture that computes a volumetric similarity
metric (VolSiM) is proposed and its robustness is evaluated on a large range of
test data. To the best of our knowledge this is the first learning method inherently
designed to address the similarity assessment of high-dimensional simulation data.

1 Introduction and Related Work

Making comparisons is a fundamental operation for the simulation of physical phenomena, as
comparisons against other models or measurements frequently occur. A recurring problem is that
traditional comparisons are typically based on simple, element-wise metrics like the Ln distances, due
to their computational simplicity and a lack of alternatives. Physical problems often exhibit strong
dependencies between elements in their solutions that should be considered, but are by definition
ignored by such metrics. This is especially problematic for systems that are modeled with dense grid
data, as the number of interactions grows exponentially with a linearly increasing number elements.
Such data representations are widely used, e.g. for medical blood flow simulations [Olufsen et al.,
2000], climate and weather predictions [Stocker et al., 2014], and even the famous unsolved problem
of turbulence [Holmes et al., 2012]. Another downside of element-wise metrics is that each element
is weighted equally, which is typically suboptimal; e.g. smoke plumes behave differently along the
vertical dimension due to gravity or buoyancy, and small key features like vortices are more indicative
of the fluid’s general behavior than large areas of near constant flow [Pope, 2000].

Two metrics commonly used across disciplines are PSNR and SSIM from Wang et al. [2004],
but both share the issues of element-wise metrics [Huynh-Thu and Ghanbari, 2008, 2012, Horé
and Ziou, 2010]. Furthermore, statistical tools like the Pearson correlation PCC [Pearson, 1920]
and Spearman’s rank correlation SRCC [Spearman, 1904] can be employed as simple similarity
measurements. Especially for images, similarity measurements have been approached in various
ways, mostly by combining deep embeddings as perceptually more accurate metrics [Prashnani et al.,

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.

2018, Talebi and Milanfar, 2018] for applications such as super-resolution [Johnson et al., 2016] or
generative tasks [Dosovitskiy and Brox, 2016]. Similarity metrics for simulation data have not been
studied extensively yet. Siamese networks for finding similar fluid descriptors have been applied to
smoke flow synthesis [Chu and Thuerey, 2017], and Um et al. [2017, 2021] used crowd-sourced user
studies for the similarity assessment of liquid simulations. Scalar 2D simulation data was previously
compared with a learned metric [Kohl et al., 2020], but their LSiM method relies on a basic feature
extractor CNN and does not account for the behavior of systems with respect to entropy. Overall, our
work contributes the following:

• We propose a novel similarity model based on the entropy of physical systems. It is employed
to synthesize sequences of volumetric physical fields suitable for metric learning.

• We show that our Siamese multiscale network results in a stable metric that successfully
generalizes to new physical phenomena across a large range of volumetric test sets.

The central application of the proposed VolSiM metric is the similarity assessment of new physical
simulation methods against a known ground truth from measurements, higher resolution simulations,
or existing models. Furthermore, the trained metric can be used as a differentiable similarity loss for
physical learning problems, similar to perceptual losses for computer vision tasks.

2 Modeling Similarity of Simulations

To formulate our methodology for learning similarity metrics that target dissipative physical systems,
we turn to the fundamental quantity of entropy. The second law of thermodynamics states that the
entropy S of a closed physical system never decreases, thus ∆S ≥ 0. In the following, we make
the reasonable assumption that the behavior of the system is continuous and non-oscillating, and
that ∆S > 0.1 The Boltzmann equation S = kB log(W) from statistical mechanics describes S
in terms of the Boltzmann constant kb and the number of microstates W of a system [Boltzmann,
1866].2 Since entropy only depends on a single system state, it can be reformulated to take the
relative change between two states into account. From an information-theoretical perspective, this is
related to using Shannon entropy [Shannon, 1948] as a diversity measure, as done by Rényi [1961].
Given a sequence of states s0, s1, . . . , sn, we define the relative entropy S̃(s) = k log(10cws). Here,
ws is the monotonically increasing, relative number of microstates defined as 0 for s0 and as 1 for
sn. 10c > 0 is a system-dependent factor that determines how quickly the number of microstates
increases, i.e. it represents the speed at which different processes decorrelate. As the properties of
similarity metrics dictate that distances are always non-negative and only zero for identical states, the
lower bound is adjusted to 0, leading to a first similarity model D̂(s) = k log(10c ws + 1). Finally,
relative similarities are equivalent up to a multiplicative constant and thus we can freely choose
k = 1/(log 10c + 1), leading to the full similarity model

D(s) =
log(10c ws + 1)

log(10c + 1)
. (1)

For a sequence s, it predicts the overall similarity behavior between the different states with
respect to entropy, given the relative number of microstates ws and the system decorrelation
speed c. Fig. 1 illustrates the connection between the logarithmically increasing entropy and
the proposed similarity model for a state sequence with length n. Here, ∆ denotes the mag-
nitude of change between the individual sequence states which is directly related to ws, and
c is the decorrelation speed of the system that produced the sequence. For an informative

s0 s1 … sn− 1 sn
States of a physical system

low

high

En
tro

py
 S Δ ≈ ε or c≈ − ∞

ε< Δ < ∞ or − ∞ < c< ∞
Δ ≈ ∞ or c≈ ∞

high

low

Si
m

ila
rit

y
to

 s 0

Figure 1: Idealized model of the behavior of entropy and
similarity for different ∆ and c.

pairwise similarity analysis, sequences
should not decorrelate too quickly (high
difficulty, red dotted) or too slowly (low
difficulty, green dashed), but evenly ex-
hibit both regimes (black curve). The
central challenges now become finding
sequences with a suitable magnitude of
∆, determining c, and assigning pair-
wise distances d.

1These assumptions are required to create sequences with meaningful ground truth distances in Sec. 3.
2We do not have any a priori information about the distribution of the likelihood of each microstate in a

general physical system. Thus, the Boltzmann entropy definition which assumes a uniform microstate distribution
is used in the following, instead of more generic entropy models such as the Gibbs or Shannon entropy.

2

3 Sequence Creation and Learning Problem Definition

As we can neither directly determine c nor d at this point, we propose to use proxies for them during
the sequence generation. Initially, this allows for finding sequences that roughly fall in a suitable
difficulty range, and accurate values can be computed afterwards. Here, we use the mean squared
error (MSE) as a proxy distance function and the PCC to determine c, to iteratively update ∆ to
a suitable range: Given any value of ∆ and a corresponding sequence, pairwise proxy distances3

between the sequence elements are computed d∆ = MSE(si, sj) and min-max normalized to [0, 1].
Next, we determine a distance sequence corresponding to the physical changes over the states, which
we model as a simple linear increase over the sequence ws = (j − i)/n following Kohl et al. [2020].
To indirectly determine c, we compare how both distance sequences differ in terms of the PCC as
r = PCC(d∆,ws). We empirically determined that correlations between 0.65 and 0.85 work well
for all cases we considered. In practice, the network stops learning effectively for r < 0.65 as states
are too different, while sequences with r > 0.85 reduce generalization as a simple metric is sufficient
to describe them. Using these thresholds, we propose two semi-automatic iterative methods to create
data, depending on the method to introduce variations to a given state (see Fig. 2). Both methods
create sequences consisting of the states s0, s1, . . . , sn with decreasing similarity to the reference
state s0, where all states have the same dimensionality. Furthermore, both sample a small set of
sequences to calibrate ∆ to a suitable magnitude and use that value for the full data set.

[A] Variations from Initial Conditions of Simulations Given a numerical PDE solver and a
set of initial conditions or parameters p, the solver computes a solution to the PDE over the time
steps t0, t1, . . . , tt. To create a larger number of different sequences, we make the systems non-
deterministic by adding noise to a simulation field and randomly generating the initial conditions
from a given range. Adjusting one of the parameters pi in steps with a small perturbation ∆i, allows
for the creation of a sequence s0, s1, . . . , sn with decreasing similarity to the unperturbed simulation
output s0. This is repeated for every suitable parameter in p, and the corresponding ∆ is updated
individually until the targeted MSE correlation range is reached.

[B] Variations from Spatio-temporal Coherences For a source D of volumetric spatio-temporal
data without access to a solver, we rely on a larger spatial and/or temporal dimension than the one
required for a sequence. We start at a random spatio-temporal position p to extract a cubical spatial
area s0 around it. p can be repeatedly translated in space and/or time by ∆t,x,y,z to create a sequence
s0, s1, . . . , sn of decreasing similarity. It is possible to add some global random perturbations q to
the positions to further increase the difficulty.

Adjust difficulty via
updating MSE correlation

Varied initial
condition

[pi
pi+1⋅Δi
pi+2⋅Δi…
pi+n⋅Δi

] [s0

s1

s2…
sn
]

Other initial conditions p∖ pi

PDE solver with time
 steps t0 , t 1 ,…, t t

iter.
solve

strength ⋅ noise (t , seed)
Noise added to simulation field

In
cr

e
as

in
g

ch
a

ng
e

D
ec

re
a

si
ng

 s
im

ila
rit

y

∀ pi∈ p ,∀ seed∈seeds

Data
sequence

output

Δi , strength r{harder if r > 0.85
easier if r < 0.65

Random
spatio-temporal
starting position

[p
p+q1+1⋅Δt , x , y , z
p+q2+2⋅Δ t , x , y , z…
p+qn+n⋅Δt , x , y , z

] [s0

s1

s2…
sn
]

D(t , x , y , z)

Spatio-temporal
data repository

In
cr

e
as

in
g

ch
a

ng
e

D
ec

re
a

si
ng

 s
im

ila
rit

y

∀ seed∈seeds

MSE correlation

Adjust difficulty via
updating Δt , x , y , z , strength {harder if r > 0.85

easier if r < 0.65 r

p = rand (seed)
Spatial cubical

cutouts at time
 around center

p̂t

p̂x , y , z

Data
sequence

output

Random spatial jitter
q = strength⋅rand (seed)

Figure 2: Iteration schemes to calibrate and create data sequences of decreasing similarity. Variation
from the reference state can be introduced via the initial conditions of a numerical PDE simulation
(method [A], left), or via spatio-temporal changes on data from a repository (method [B], right).

Data Sets To create data with method [A], we utilize solvers for a basic Advection-Diffusion model
(Adv), Burgers’ equation (Bur) with an additional viscosity term, and the full Navier-Stokes equations
via a Eulerian smoke simulation (Smo) and a hybrid Eulerian-Lagrangian liquid simulation (Liq).
The corresponding validation sets are generated with a separate set of random seeds. Furthermore,
we use adjusted versions of the noise integration for two test sets, by adding noise to the density
instead of the velocity in the Advection-Diffusion model (AdvD) and overlaying background noise in
the liquid simulation (LiqN). We create seven test sets via method [B]. Four come from the Johns
Hopkins Turbulence Database [Perlman et al., 2007] that contains a large amount of DNS data, where
each is based on a subset of the JHTDB and features simulations with different characteristics (Iso,

3To keep the notation concise, sequentially indexing the distance vectors d∆ and ws with i and j is omitted.

3

Cha, Mhd, and Tra). In addition, one test set (SF) via temporal translations is based on ScalarFlow
[Eckert et al., 2019], consisting of 3D reconstructions of real smoke plumes. Finally, we procedurally
synthesize spatial fields instead of using a data repository, to create a randomized shape (Sha) and
damped waves (Wav) data set. All data was gathered in sequences with n = 10 at resolution 1283, and
downsampled to 643 for computational efficiency during training and evaluations. App. B contains
further generation details as well as example visualizations for each data set.

Determining c For each calibrated sequence, we can now more accurately estimate c. As c corre-
sponds to the decorrelation speed of the system, we choose Pearson’s distance d∆i = 1−PCC(s0, si)
as a distance proxy here. c is determine via standard unbounded least-squares optimization from the
similarity model as c = argminc

log(10c d∆+1)
log(10c+1) .

Learning Setup Given the calibrated sequences s of different physical systems with elements
s0, s1, . . . , sn, the corresponding value of c, and the pairwise physical target distance sequence
ws = (j − i)/n, we can now formulate a semi-supervised learning problem: We train a neural
network m that receives pairs from s as an input, and outputs scalar distances d for each pair. These
predictions are trained against ground truth distances g = log(10c ws+1)

log(10c+1) determined by the sequence
order, transformed according to the entropy-based similarity model. Following Kohl et al. [2020], we
use the loss

L(d, g) = λ1(d− g)2 + λ2

(
1−

(∑n
i=1(di − d̄) (gi − ḡ)

/√∑n
i=1(di − d̄)2

√∑n
i=1(gi − ḡ)2

))
(2)

consisting of a weighted MSE and an inverted correlation term, where d̄ and ḡ denote the mean.

Network Structure For our VolSiM distance metric, we generally follow the established Siamese
network structure, that was originally proposed for 2D domains [Zhang et al., 2018]: First, two inputs
are embedded in a latent space using a CNN as a feature extractor. The Siamese structure means
that the weights are shared, which ensures the mathematical requirements for a pseudo-metric [Kohl
et al., 2020]. Next, the features from all layers are normalized, compared with an element-wise
comparison like an absolute or squared difference, and aggregated to a scalar distance value. We
propose a multiscale network to compute VolSiM, since physical systems often exhibit self-similar
behavior that does not significantly change across scales. Generally, scaling a data pair should not
alter its similarity, and networks can learn such an invariance to scale most effectively by processing
data at different scales. For learned image metrics, this invariance is also useful (but less crucial),
and often introduced with large strides and kernels in the convolutions, e.g. via a feature extractor
based on AlexNet [Zhang et al., 2018]. However, we propose to directly encode this scale structure
in a multiscale architecture for a more accurate similarity assessment, and a network with a smaller
resource footprint. Fig. 3 shows proposed fully convolutional network, that effectively learns a
mixture of connected deep features and similar representations across scales. Additional network and
training details can be found in App. A.

ScaleBlock 4

Input

ScaleBlock 8

Concatenation

2x2x2 AvgPool

ScaleBlock 16

Concatenation

4x4x4 AvgPool

ScaleBlock 32

Concatenation

8x8x8 AvgPool

native resolution 1/2resolution 1/4 resolution 1/8 resolution

5x5x5 Conv, s=1

5x5x5 Conv, s=2

3x3x3 Conv, s=1

3x3x3 Conv, s=1

 ReLU

 ReLU

 ReLU

S
caleB

lo
ck c

each C
o nv: c c hannel s

Figure 3: Conv+ReLU blocks (left) are interwoven with input and resolution connections (blue dotted
and red dashed), to form the combined network architecture (right) with about 350k weights.

4 Results

To determine the accuracy of any metric during inference in the following, we compute the SRCC
between the distance predictions of the metric d and the ground truth ws, where a value closer to
1 indicates a better reconstruction.4 We compare different existing methods on our validation and

4This is equivalent to SRCC(d, g), but is computationally more efficient and has numerical benefits.

4

test sets at the top of Tab. 1. The proposed VolSiM metric consistently reconstructs the ground truth
distances more reliably than other approaches on most data sets. As expected, this effect is most
apparent on the validation sets since their distribution is closest to the training data. But even on
the majority of test sets with a very different distribution, VolSiM is the best or close to the best
performing metric. Metrics without deep learning such as SSIM [Wang et al., 2004] or variation
of information VI [Meilă, 2007] often fall short, indicating that they were designed for different
domains. The strictly element-wise metrics MSE and PSNR exhibit almost identical performance,
and both work poorly on a variety of data sets. As the learning-based methods LPIPS [Zhang et al.,
2018] and LSiM [Kohl et al., 2020] are limited to 2D, their assessments in Tab. 1 are obtained by
averaging sliced evaluations for all three spatial axes. Both methods show improvements over the
element-wise metrics, but are still clearly inferior to the performance of VolSiM. LSiM can only come
close to VolSiM on less challenging data sets where correlation values are close to 1 and all learned
reconstructions are already highly accurate. This improvement is comparable to using LPIPS over
PSNR, and represents a significant step forward in terms of a robust similarity assessment.

Validation data sets Test data sets

Simulated Simulated Generated JHTDBa SFb c

Metric Adv Bur Liq Smo AdvD LiqN Sha Wav Iso Cha Mhd Tra SF All

MSE 0.61 0.70 0.51 0.68 0.77 0.76 0.75 0.65 0.76 0.86 0.80 0.79 0.79 0.70
PSNR 0.61 0.68 0.52 0.68 0.78 0.76 0.75 0.65 0.78 0.86 0.81 0.83 0.79 0.73
SSIM 0.75 0.68 0.49 0.64 0.81 0.80 0.76 0.88 0.49 0.55 0.62 0.60 0.44 0.61
VI 0.57 0.69 0.43 0.60 0.69 0.82 0.67 0.87 0.59 0.76 0.68 0.67 0.41 0.62
LPIPS (2D) 0.63 0.62 0.35 0.56 0.76 0.62 0.87 0.92 0.71 0.83 0.79 0.76 0.87 0.76
LSiM (2D) 0.57 0.55 0.48 0.71 0.79 0.75 0.93 0.97 0.69 0.86 0.79 0.81 0.98 0.81
VolSiM (ours) 0.75 0.73 0.66 0.77 0.84 0.88 0.95 0.96 0.77 0.86 0.81 0.88 0.95 0.85

CNNtrained 0.60 0.71 0.63 0.76 0.81 0.77 0.92 0.93 0.75 0.86 0.78 0.85 0.95 0.82
MSidentity 0.75 0.71 0.68 0.73 0.83 0.85 0.87 0.96 0.74 0.87 0.77 0.87 0.94 0.82
MS3 scales 0.70 0.69 0.70 0.73 0.83 0.82 0.95 0.94 0.76 0.87 0.80 0.88 0.93 0.83
MS5 scales 0.78 0.72 0.78 0.78 0.81 0.90 0.94 0.93 0.75 0.85 0.77 0.88 0.93 0.82
MSadded Iso 0.73 0.72 0.77 0.79 0.84 0.84 0.92 0.97 0.79 0.87 0.80 0.86 0.97 0.84
MSonly Iso 0.58 0.62 0.32 0.63 0.78 0.65 0.72 0.92 0.82 0.77 0.86 0.79 0.65 0.75
a Johns Hopkins Turbulence Database [Perlman et al., 2007] b ScalarFlow [Eckert et al., 2019] c Combined test data sets

Table 1: Top: performance comparison of different metrics via the SRCC (bold+underlined: best
method for each data set, bold: within a 0.01 margin of the best performing). Bottom: ablation study
of the proposed method (gray: advantage due to different training data).

The bottom of Tab. 1 contains an ablation study of the proposed architecture MS and a simple CNN
model that does not utilize a multiscale structure. Even though VolSiM has more than 80% fewer
weights compared to CNNtrained, it can fit the training data more easily and generalizes better to most
data sets, indicating the strengths of the proposed multiscale architecture. We replace the non-linear
transformation of ws from the similarity model with an identity transformation for MSidentity during
training, i.e. only the sequence order determines g. This consistently lowers the generalization of the
metric across data sets, indicating that well calibrated sequences as well as the similarity model are
important. Removing the last resolution scale block for MS3 scales overly reduces the capacity of the
model, while adding another block for MS5 scales is not beneficial. In addition, we also investigate
two slightly different training setups: for MSadded Iso we integrate extra sequences created like the
Iso data during training, while MSonly Iso is exclusively trained on such sequences. MSadded Iso
only slightly improves upon the baseline, and even the turbulence-specific MSonly Iso model does
not consistently improve the results on the JHTDB data sets. Both cases indicate a high level of
generalization for VolSiM, as it was not trained on any turbulence data.

5 Conclusion

We presented the multiscale CNN architecture VolSiM that is trained with a similarity model based
on the behavior of entropy in physical systems. Its capabilities as a metric for volumetric simulations
were highlighted and utilized to learn a robust, physical similarity assessment. The proposed metric
potentially has an impact on various disciplines where volumetric simulation data arises.

5

Ethical Statement

Since we target the fundamental problem of the similarity assessment of numerical simulations, we do
not see any direct negative ethical implications of our work. However, there could be indirect negative
effects since this work can act as a tool for more accurate and/or robust numerical simulations in
the future, for which a military relevance exists. A further indirect issue could be explainability,
e.g. when simulations in an engineering process yield unexpected inaccuracies.

References
L. Boltzmann. Über Die Mechanische Bedeutung Des Zweiten Hauptsatzes Der Wärmetheorie:

(Vorgelegt in Der Sitzung Am 8. Februar 1866). Staatsdruckerei, 1866.

M. Chu and N. Thuerey. Data-driven synthesis of smoke flows with cnn-based feature descriptors.
ACM Transactions on Graphics, 36(4):69:1–69:14, 2017. doi:10.1145/3072959.3073643.

A. Dosovitskiy and T. Brox. Generating images with perceptual similarity metrics based on deep
networks. In Advances in Neural Information Processing Systems 29, volume 29, 2016. URL
http://arxiv.org/abs/1602.02644.

M.-L. Eckert, K. Um, and N. Thuerey. Scalarflow: A large-scale volumetric data set of real-world
scalar transport flows for computer animation and machine learning. ACM Transactions on
Graphics, 38(6), 2019. doi:10.1145/3355089.3356545.

P. Holl, N. Thuerey, and V. Koltun. Learning to control pdes with differentiable physics. In 8th
International Conference on Learning Representations (ICLR 2020). OpenReview.net, 2020. URL
https://openreview.net/forum?id=HyeSin4FPB.

P. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley. Turbulence, Coherent Structures, Dy-
namical Systems and Symmetry. Cambridge University Press, 2012. ISBN 978-0-511-91970-1.
doi:10.1017/CBO9780511919701.

A. Horé and D. Ziou. Image quality metrics: Psnr vs. ssim. In 20th International Conference on
Pattern Recognition (ICPR 2010), pages 2366–2369, 2010. doi:10.1109/ICPR.2010.579.

Q. Huynh-Thu and M. Ghanbari. Scope of validity of psnr in image/video quality assessment.
Electronics Letters, 44(13):800–801, 2008. ISSN 0013-5194. doi:10.1049/el:20080522.

Q. Huynh-Thu and M. Ghanbari. The accuracy of psnr in predicting video quality for different
video scenes and frame rates. Telecommunication Systems, 49(1):35–48, 2012. ISSN 1572-9451.
doi:10.1007/s11235-010-9351-x.

J. Johnson, A. Alahi, and L. Fei-Fei. Perceptual losses for real-time style transfer and super-resolution.
In Computer Vision - ECCV 2016, volume 9906, pages 694–711, 2016. doi:10.1007/978-3-319-
46475-6_43.

G. Kohl, K. Um, and N. Thuerey. Learning similarity metrics for numerical simulations. In
Proceedings of the 37th International Conference on Machine Learning (ICML 2020), volume 119,
pages 5349–5360, 2020. URL http://proceedings.mlr.press/v119/kohl20a.html.

M. Meilă. Comparing clusterings—an information based distance. Journal of Multivariate Analysis,
98(5):873–895, 2007. ISSN 0047-259X. doi:10.1016/j.jmva.2006.11.013.

M. S. Olufsen, C. S. Peskin, W. Y. Kim, E. M. Pedersen, A. Nadim, and J. Larsen. Numerical
simulation and experimental validation of blood flow in arteries with structured-tree outflow
conditions. Annals of Biomedical Engineering, 28(11):1281–1299, 2000. doi:10.1114/1.1326031.

A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imperative style, high-performance deep
learning library. In Advances in Neural Information Processing Systems 32, pages 8024–8035,
2019. doi:10.48550/arXiv.1912.01703.

6

https://doi.org/10.1145/3072959.3073643
http://arxiv.org/abs/1602.02644
https://doi.org/10.1145/3355089.3356545
https://openreview.net/forum?id=HyeSin4FPB
https://doi.org/10.1017/CBO9780511919701
https://doi.org/10.1109/ICPR.2010.579
https://doi.org/10.1049/el:20080522
https://doi.org/10.1007/s11235-010-9351-x
https://doi.org/10.1007/978-3-319-46475-6_43
https://doi.org/10.1007/978-3-319-46475-6_43
http://proceedings.mlr.press/v119/kohl20a.html
https://doi.org/10.1016/j.jmva.2006.11.013
https://doi.org/10.1114/1.1326031
https://doi.org/10.48550/arXiv.1912.01703

K. Pearson. Notes on the history of correlation. Biometrika, 13(1):25–45, 1920.
doi:10.1093/biomet/13.1.25.

E. Perlman, R. Burns, Y. Li, and C. Meneveau. Data exploration of turbulence simulations using a
database cluster. In Proceedings of the ACM/IEEE Conference on High Performance Networking
and Computing, pages 1–11, 2007. doi:10.1145/1362622.1362654.

S. Pope. Turbulent Flows. Cambridge University Press, 2000. ISBN 978-0-511-84053-1.
doi:10.1017/CBO9780511840531.

E. Prashnani, H. Cai, Y. Mostofi, and P. Sen. Pieapp: Perceptual image-error assessment through
pairwise preference. In 2018 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1808–1817. IEEE Computer Society, 2018. doi:10.1109/CVPR.2018.00194.

A. Rényi. On measures of entropy and information. In Proceedings of the 4th Berkeley Symposium
on Mathematical Statistics and Probability, Volume 1: Contributions to the Theory of Statistics,
pages 547–561. University of California Press, 1961.

C. E. Shannon. A mathematical theory of communication. The Bell System Technical Journal, 27(3):
379–423, 1948. ISSN 0005-8580. doi:10.1002/j.1538-7305.1948.tb01338.x.

C. Spearman. The proof and measurement of association between two things. The American Journal
of Psychology, 15(1):72–101, 1904. doi:10.2307/1412159.

T. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S. Allen, J. Borschung, A. Nauels, Y. Xia, V. Bex, and
P. Midgley. Climate Change 2013: The Physical Science Basis. Cambridge University Press, 2014.
ISBN 978-1-107-41532-4. doi:10.1017/CBO9781107415324.

H. Talebi and P. Milanfar. Learned perceptual image enhancement. In 2018 IEEE International
Conference on Computational Photography (ICCP), 2018. doi:10.1109/ICCPHOT.2018.8368474.

N. Thuerey and T. Pfaff. Mantaflow, 2018. URL http://mantaflow.com.

K. Um, X. Hu, and N. Thuerey. Perceptual evaluation of liquid simulation methods. ACM Transactions
on Graphics, 36(4), 2017. doi:10.1145/3072959.3073633.

K. Um, X. Hu, B. Wang, and N. Thuerey. Spot the difference: Accuracy of numerical simulations
via the human visual system. ACM Transactions on Applied Perception, 18(2):6:1–6:15, 2021.
doi:10.1145/3449064.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. Simoncelli. Image quality assessment: From error
visibility to structural similarity. IEEE Transactions on Image Processing, 13(4):600–612, 2004.
doi:10.1109/TIP.2003.819861.

R. Zhang, P. Isola, A. A. Efros, E. Shechtman, and O. Wang. The unreasonable effectiveness of
deep features as a perceptual metric. In 2018 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 586–595, 2018. doi:10.1109/CVPR.2018.00068.

Y. Zhu and R. Bridson. Animating sand as a fluid. In ACM Transactions on Graphics, pages 965–972,
2005. doi:10.1145/1186822.1073298.

7

https://doi.org/10.1093/biomet/13.1.25
https://doi.org/10.1145/1362622.1362654
https://doi.org/10.1017/CBO9780511840531
https://doi.org/10.1109/CVPR.2018.00194
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.2307/1412159
https://doi.org/10.1017/CBO9781107415324
https://doi.org/10.1109/ICCPHOT.2018.8368474
http://mantaflow.com
https://doi.org/10.1145/3072959.3073633
https://doi.org/10.1145/3449064
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/CVPR.2018.00068
https://doi.org/10.1145/1186822.1073298

Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [Yes]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes] See Appendix A, B.
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [No] All data sets contain a larger number of individual data
pairs across sequences with different random initializations, leading to comparatively
stable evaluations. In most cases an aggregation of multiple test sets is reported.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Appendix A.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

8

APPENDIX

In the following, additional details for the proposed VolSiM metric are provided: App. A contains
implementation details regarding the training and the metric model setup, and App. B features
generation details and visualizations for all our data sets.

A Implementation Details

In addition to the multiscale feature extractor network, the following operations were used for the
Siamese architecture of the metric: Each feature map is normalized via a mean and standard deviation
normalization to a standard normal distribution. The mean and standard deviation of each feature
map is computed in a pre-processing step for the initialization of the network over all data samples.
Both values are fixed for training the metric afterwards. To compare both sets of feature maps in
the latent space, a simple element-wise, squared difference is employed. To keep the mathematical
metric properties, this also requires a square root operation before the final distance output. The
spatial squared feature map differences are then aggregated along all dimensions into a scalar distance
output. Here, we used a single learned weight with dropout for every feature map, to combine them
to a weighted average per network layer. The activations of the average feature maps are spatially
combined with a simple mean, and summed over all network layers afterwards. This process of
normalizing, comparing, and aggregating the feature maps computed by the feature extractor follows
previous work [Kohl et al., 2020, Zhang et al., 2018]. The weights to adjust the influence of each
feature map are initialized to 0.1, all other weights of the multiscale feature extractor are initialized
with the default PyTorch initialization. For the final loss, the MSE term was weighted with λ1 = 1.0,
while the correlation term was weighted with λ2 = 0.7.

The training and evaluation process of the metric was implemented in PyTorch [Paszke et al., 2019],
while the data was simulated and collected with specialized solvers and data interfaces as described
in App B. The data acquisition, training, and metric evaluation was performed on a server with an
Intel i7-6850 (3.60Ghz) CPU and an NVIDIA GeForce GTX 1080 Ti GPU. It took about 38 hours of
training to fully optimize the final VolSiM model for the data sequences with a spatial resolution of
643. To increase the model’s robustness during training, we used the following data augmentations
for each sequence: the data is normalized to [−1, 1], and together randomly flipped and rotated in
increments of 90° around a random axis. The velocity channels are randomly swapped to prevent
directional biases from some simulations, while scalar data is extended to the three input channels
via repetition. For inference, only the normalization operation and the repetition of scalar data is
performed. The final metric model was trained with the Adam optimizer with a learning rate of 10−4

for 30 epochs via early stopping.

B Data Set Details

In the following sections, the details underlying each data set are described. Tab. 2 contains a
summary of simulator, simulation setup, varied parameters, noise integration, and used fields for
the simulated and generated data sets. Tab. 3 features a summary of the collected data sets, with
repository details, jitter and cutout settings, and spatial and temporal ∆ values. Both tables also
contain the number of sequences created for training, validation, and testing for every data source.

B.1 Advection-Diffusion and Burgers’ Equation

In its simplest form, the transport of matter in a flow can be described by the two phenomena of
advection and diffusion. Advection describes the movement of a passive quantity inside a velocity
field over time, and diffusion describes the process of dissipation of this quantity due to the second
law of thermodynamics.

∂d

∂t
= ν∇2d− u · ∇d (3)

Eq. 3 is the simplified Advection-Diffusion equation with constant diffusivity and no sources or sinks,
where u denotes the velocity, d is a scalar passive quantity that is transported, and ν is the diffusion
coefficient or kinematic viscosity.

9

Burgers’ Equation in Eq. 4 is similar to the Advection-Diffusion equation, but it describes how the
velocity field itself changes over time with advection and diffusion. The diffusion term can also be
interpreted as a viscosity, that models the resistance of the material to deformations. Furthermore,
this variation can develop discontinuities (also called shock waves). Here, u also denotes the velocity
and ν the kinematic viscosity or diffusion coefficient.

∂u

∂t
= ν∇2u− u · ∇u (4)

To solve both PDEs, the differentiable fluid framework PhiFlow [Holl et al., 2020] was used. The
solver utilizes a Semi-Lagrangian advection scheme, and we chose periodic domain boundary
conditions to allow for the usage of a Fourier space diffusion solver. We introduced additional
continuous forcing to the simulations by adding a force term f to the velocity after every simulation
step. Thus, f depends on the time steps t, that is normalized by division of the simulation domain
size beforehand. For Adv, Bur, and AdvD, we initialized the fields for velocity, density, and force
with multiple layered parameterized sine functions. This leads to a large range of patterns across
multiple scales and frequencies when varying the sine parameters.

ux(p) = sum
(
fx
1 +

4∑
i=1

fx
i+1 ∗ sin(2iπp+ ci o

x
(i+1mod 2)+1)

)
where c = (1, 1, 0.4, 0.3)

(5)

fx(p, t) = sum
(
fx
6 ∗ (1 + fx

6 ∗ 20) ∗
4∑

i=1

fx
i+1 ∗ sin(2iπp̃+ ci o

x
(imod 2)+1)

)
where p̃ = p+ fx

7 ∗ 0.5 + fx
7 ∗ sin(3t) and c = (0, 1, 1, 0.7)

(6)

d(p) = sum
({x,y,z}∑

i

sin(f i
d ∗ 24πpi + oid)

)
(7)

Eq. 5, 6, and 7 show the layered sine functions in ux(p), fx(p), and d(p) for a spatial grid position
p ∈ R3. The sum operation denotes a sum of all vector elements here, and all binary operations on
vectors and scalars use broadcasting of the scalar value to match the dimensions. Eq. 8 shows the
definition of the function parameters used above, all of which are randomly sampled based on the
simulation seed for more diverse simulations.
fx
1 ∼ U(−0.2, 0.2)3

fx
2 ∼ U(−0.2, 0.2)3

fx
3 ∼ U(−0.15, 0.15)3

fx
4 ∼ U(−0.15, 0.15)3

fx
5 ∼ U(−0.1, 0.1)3

fx
6 ∼ U(0.0, 0.1)3

fx
7 ∼ U(−0.1, 0.1)3

fx,y,z
d ∼ {1, 1

2
, 1
3
, 1
4
, 1
5
, 1
6
}3

ν ∼ U(0.0002, 0.1002)

ox
1 ∼ U(0, 100)3

ox
2 ∼ U(0, 100)3

ox,y,z
d ∼ U(0, 100)3

(8)

Note that ν was multiplied by 0.1 for Bur. The remaining velocity and force components uy(p),
uz(p), fy(p), and fz(p) and corresponding parameters are omitted for brevity here, since they
follow the same initialization pattern as ux(p) and fx(p). Tab. 2 shows the function parameters that
were varied, by using the random initializations and adjusting one of them in linear steps to create a
sequence. The main difference between the Advection-Diffusion training data and the test set is the
method of noise integration: For Adv it is integrated into the simulation velocity, while for AdvD it is
added to the density field instead. The amount of noise added to the velocity for Bur and Adv and to
the density for AdvD was varied in isolation as well.

B.2 Navier-Stokes Equations

The Navier-Stokes Equations fully describe the behavior of fluids like gases and liquids, via modelling
advection, viscosity, and pressure effects, as well as mass conservation. Pressure can be interpreted
as the force exerted by surrounding fluid mass at a given point, and the conservation of mass means
that the fluid resists compression.

∂u

∂t
+ (u · ∇)u = −∇P

ρ
+ ν∇2u+ g (9)

∇ · u = 0. (10)

10

Eq. 9 describes the conservation of momentum, and Eq. 10 describes mass conservation. Again, u
denotes the velocity, P is the pressure, ρ is the fluids density, ν is the kinematic viscosity, and g
denotes external forces like gravity.

Smoke To create the smoke data set Smo, the fluid framework MantaFlow [Thuerey and Pfaff,
2018] that provides a grid-based Eulerian smoke solver for the Navier-Stokes Equations was used. It
is based on a Semi-Lagrangian advection scheme, and on the conjugate gradient method as a pressure
solver. The simulation setup consists of a cylindrical smoke source at the bottom of the domain with
a fixed noise pattern initialization to create more diverse smoke plumes. Furthermore, a constant
spherical force field ff is positioned over the source. This setup allows for a variation of multiple
simulation parameters, like the smoke buoyancy, the source position and different force field settings.
They include position, rotation, radius and strength. In addition, the amount of added noise to the
velocity can also be varied in isolation.

Liquid Both liquid data sets, Liq and LiqN, were created with a liquid solver in MantaFlow. It
utilizes the hybrid Eulerian-Lagrangian fluid implicit particle method [Zhu and Bridson, 2005],
that combines the advantages of particle and grid-based liquid simulations for reduced numerical
dissipation. The simulation setup consists of two liquid cuboids of different shapes, similar to the
common breaking dam setup. After 25 simulation time steps a liquid drop is added near the top of
the simulation domain, and it falls down on the water surface that is still moving. Here, the external
gravity force as well as the drops position and radius are varied to create similarity sequences. As
for the smoke data, a modification of the amount of noise added to the velocity was also employed
as a varied parameter. The main difference between the liquid training data and the test set is the
method of noise integration: For Liq it is integrated into the simulation velocity, while for LiqN it is
overlayed on the simulation background.

B.3 Generated Data

To create the shape data set Sha and the wave data set Wav, a random number of straight paths are
created by randomly generating a start and end point inside the domain. It is ensured that both are not
too close to the boundaries and that the path has a sufficient length. The intermediary positions for
the sequence are a result of linearly interpolating on these paths. The positions on the path determine
the center for the generated objects that are added to an occupancy marker grid. For both data sets,
overlapping shapes and waves are combined additively, and variations with and without overlayed
noise to the marker grid were created.

Shapes For Sha, random shapes (box or sphere) are added to the positions, where the shape’s size
is a random fraction of the path length, with a minimum and maximum constraint. The created shapes
are then applied to the marker grid either with or without smoothed borders.

Waves For Wav, randomized volumetric damped cosine waves are added around the positions
instead. The marker grid value m at point p for a single wave around a center c is defined as

m(p) = cos(w ∗ p̃) ∗ e−(3.7p̃/r) where p̃ = ∥p− c∥2 .

Here, r is the radius given by the randomized size that is computed as for Sha, and w ∼ U(0.1, 0.3)
is a randomized waviness value, that determines the frequency of the damped wave.

B.4 Collected Data

The collected data sets Iso, Cha, Mhd, and Tra are based on different subsets from the Johns Hopkins
Turbulence Database JHTDB [Perlman et al., 2007], that contain different types of data from direct
numerical simulations (DNS): isotropic turbulence (Iso), a channel flow (Cha), magneto-hydrodyna-
mic turbulence (Mhd), and a transitional boundary layer (Tra). In these simulations, all spatial scales
of turbulence up to the dissipative regime are resolved. The data set SF is based on the ScalarFlow
data [Eckert et al., 2019], that contains dense 3D velocity fields of real buoyant smoke plumes, created
via multi-view reconstruction technique.

11

JHTDB The JHTDB subsets typically contain a single simulation with a very high spatial and
temporal resolution and a variety of fields. We focus on the velocity fields, since turbulent flow data is
especially complex and potentially benefits most from a better similarity assessment. We can mainly
rely on using temporal sequences, and only need to add spatial jitters in some cases to increase the
difficulty. As turbulence generally features structures of interest across all length scales, we create
sequences of different spatial scales for each subset. To achieve this, we randomly pick a cutout scale
factor s. If s = 1, we directly use the native spatial discretization provided by the database. For
s > 1 we stride the spatial query points of the normal cubical cutout by s after filtering the data. For
s < 1 the size of the cubical cutout is reduced by a factor of s in each dimension, and the cutout is
interpolated to the full spatial size of 1283 afterwards. Among other details, Tab. 3 shows the cutout
scale factors, as well as the corresponding random weights.

ScalarFlow Since 100 reconstructions of different smoke plumes are provided in ScalarFlow, there
is no need to add additional randomization to create multiple test sequences. Instead, we directly use
each reconstruction sequence to create one similarity sequence in equal temporal steps. The only
necessary pre-processing step is cutting off the bottom part of domain that contains the smoke inflow,
since it is frequently not fully reconstructed. Afterwards, the data is interpolated to the full spatial
size of 1283 to match the other data sets.

B.5 Additional Example Sequences

Fig. 4, 5, and 6 show multiple full example sequences from all our data sets. In every sequence, the
leftmost image is the baseline field. Moving further to the right, the change of one initial parameter
increases for simulated data sets, and the spatio-temporal position offset increases for generated
and collected data. To plot the sequences, the 3D data is projected along the z-axis to 2D via a
simple mean operation. This means, noise that was added to the data or the simulation is typically
significantly less obvious due to statistical averaging in the projection. Velocity data is directly
mapped to RGB color channels, and scalar data is shown via different shades of gray. Unless note
otherwise, the data is jointly normalized to [0, 1] for all channels at the same time, via the overall
minimum and maximum of the data field.

Adv Bur Liq Smo AdvD LiqN Sha Wav

Sequences
train–val–test 398–57–0 408–51–0 405–45–0 432–48–0 0–0–57 0–0–30 0–0–60 0–0–60

Equation Eq. 3 Eq. 4 Eq. 9, 10 Eq. 9, 10 Eq. 3 Eq. 9, 10 — —

Simulator PhiFlowd PhiFlowd MantaFlowe MantaFlowe PhiFlowd MantaFlowe MantaFlowe MantaFlowe

Simulation
setup layered sines layered sines breaking

dam + drop

rising plume
with force

field
layered sines breaking

dam + drop
random
shapes

random
damped
waves

Time steps 120 120 80 120 120 80 — —

Varied aspects

f1, f2,
f3, f4,
f5, f7,
o1, o2,

od, noise

f1, f2,
f3, f4,
f5, f7,
o1, o2,
noise

dropx
dropy
dropz

droprad
gravx
gravy
gravz
noise

buoyx
buoyy
ffrot x
ffrot z
ffstr x
ffstr z
ffpos x
ffpos y
ffrad

sourcex
sourcey
noise

f1, f2,
f3, f4,
f5, f7,
o1, o2,

od, noise

dropx
dropy
dropz

droprad
gravx
gravy
gravz
noise

shape
position

wave
position

Noise
integration

added to
velocity

added to
velocity

added to
velocity

added to
velocity

added to
density

overlay on
non-liquid

overlay on
marker

overlay on
marker

Used fields density velocity velocity
flags levelset

density
pressure
velocity

density velocity marker marker

d PhiFlow from Holl et al. [2020] e MantaFlow from Thuerey and Pfaff [2018]

Table 2: Data set detail summary for the simulated and generated data sets.

12

https://github.com/tum-pbs/PhiFlow
http://mantaflow.com/

Adv: Advection-Diffusion (2×density)

Bur: Burgers’ Equation (2×velocity)

Smo: Smoke (velocity, density, and pressure)

Liq: Liquid (velocity, leveset, and flags)

Figure 4: Example sequences of simulated training data, where each row features a full sequence
from a different random seed.

13

AdvD: Advection-Diffusion with density noise (2×density)

LiqN: Liquid with background noise (2×velocity)

SF: ScalarFlow (2×velocity)

Sha: Shapes (2×marker, without and with noise)

Wav: Waves (2×marker, without and with noise)

Figure 5: Example sequences of simulated (top two data sets), collected (middle data set), and
generated (bottom two data sets) test data. Each row contains a full sequence from a different random
seed. It is difficult to visually observe the background noise in LiqN due the projection along the
z-axis to 2D, and due to image compression.

14

Iso: Isotropic turbulence (3×velocity)

Cha: Channel flow (3×velocity)

Mhd: Magneto-hydrodynamic turbulence (3×velocity)

Tra: Transitional boundary layer (3×velocity)

Figure 6: Example sequences of collected test data from JHTDB, where each row shows a full
sequence from a different random seed. Notice the smaller cutout scale factor s for the middle
example in each case. The predominant x-component in Cha is separately normalized for a more
clear visualization.

15

Iso Cha Mhd Tra SF

Sequences
train–val–test 0–0–60 0–0–60 0–0–60 0–0–60 0–0–100

Repository
JHTDB –
isotropic

1024coarse f

JHTDB –
channel f

JHTDB –
mhd1024 f

JHTDB –
transition_bl f ScalarFlow g

Repository size h

s× t× x× y × z

1× 5028×
1024×

1024× 1024

1× 4000×
2048×

512× 1536

1× 1024×
1024×

1024× 1024

1× 4701×
10240×

1536× 2048

100× 150×
100× 178×

100 i

Temporal offset ∆t 180 37 95 25 13

Spatial offset ∆x,y,z 0 0 0 0 0

Spatial jitter 0 0 25 0 0

Cutout scales
0.25, 0.5,
0.75, 1,
2, 3, 4

0.25, 0.5,
0.75, 1,
2, 3, 4

0.25, 0.5,
0.75, 1,
2, 3, 4

0.25, 0.5,
0.75, 1, 2

1

Cutout scale random
weights

0.14, 0.14,
0.14, 0.16,
0.14, 0.14,

0.14

0.14, 0.14,
0.14, 0.16,
0.14, 0.14,

0.14

0.14, 0.14,
0.14, 0.16,
0.14, 0.14,

0.14

0.14, 0.14,
0.14, 0.30,

0.28
1

Used fields velocity velocity velocity velocity velocity
f JHTDB from Perlman et al. [2007] g ScalarFlow from Eckert et al. [2019] h simulations s × time
steps t × spatial dimensions x, y, z i cut to 100× 150× 100× 160× 100 (removing 18 bottom values
from y), since the smoke inflow is not fully reconstructed

Table 3: Data set detail summary for collected data sets.

16

http://turbulence.pha.jhu.edu/
https://mediatum.ub.tum.de/1521788

	Introduction and Related Work
	Modeling Similarity of Simulations
	Sequence Creation and Learning Problem Definition
	Results
	Conclusion
	Implementation Details
	Data Set Details
	Advection-Diffusion and Burgers' Equation
	Navier-Stokes Equations
	Generated Data
	Collected Data
	Additional Example Sequences

