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Abstract

In this paper, we present a machine learning framework for performing frequentist
maximum likelihood inference with Gaussian uncertainty estimation, which also
quantifies the mutual information between the unobservable and measured quanti-
ties. This framework uses the Donsker-Varadhan representation of the Kullback-
Leibler divergence—parametrized with a novel Gaussian Ansatz—to enable a
simultaneous extraction of the maximum likelihood values, uncertainties, and mu-
tual information in a single training. We demonstrate our framework by extracting
jet energy corrections and resolution factors from a simulation of the CMS detector
at the Large Hadron Collider. By leveraging the high-dimensional feature space
inside jets, we improve upon the nominal CMS jet resolution by upward of 15%.

1 Introduction

One of the most foundational tasks in high energy physics (HEP) is the inference of an unobservable
quantity given a measured quantity, which is often referred to as calibration. There has been
significant progress in utilizing Machine Learning (ML) methods for calibrating the energies of
various objects, including photons [1], muons [2], single hadrons [3, 4, 5, 6, 7, 8], and sprays of
hadrons (jets) [9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19] at colliders; kinematic reconstruction in deep
inelastic scattering [20, 21]; and neutrino energies in a variety of experiments [22, 23, 24, 25, 26, 27].

Abstractly, the calibration task can be described as quantifying the relationship between two random
variables X ∈ RM and Z ∈ RN . Here, X is the measured quantity and Z is the unobservable
(“latent”) quantity.1 While ML methods are effective even when M and N are large, most existing
methods have the undesirable property of being prior dependent [28]. As a result, the calibration is
not universal and caution must be taken when applying it to different event samples.

1Throughout this paper, upper case letters represent random variables and lower case letters represent
realizations of those random variables.
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Furthermore, quantifying the reconstruction resolution is relevant for a variety of purposes, including
the computation of significance variables [29, 30] and background estimation [31, 32]. Various ML
approaches for resolution determination have been recently studied for HEP [33, 34, 35, 36, 37, 38,
39], but they typically require additional training or model complexity.

In this paper, we introduce a simple ML framework for calibration that simultaneously estimates the
following quantities:

1. A prior-independent maximum-likelihood calibration, ẑ(x) = argmaxz p(x|z);
2. A Gaussian resolution around ẑ(x), σ̂z(x);

3. The log-likelihood ratio, log p(x|z)
p(x) ; and

4. The mutual information between X and Z, I(X;Z).

To extract ẑ(x) and σ̂z(x) in a single training, we use a novel Gaussian Ansatz, extending the
Mutual Information Neural Estimator (MINE) of [40], to parametrize the log-likelihood ratio. After
describing the Gaussian Ansatz construction, we illustrate the above features in a case study involving
jet reconstruction at the Large Hadron Collider (LHC).

2 Calibration and Correlation

The starting point for our calibration method is the concept of mutual information (MI), defined as:

I(X;Z) =

∫
dx dz p(x, z) log

p(x, z)

p(x) p(z)
, (1)

where p denotes the probability density of the respective random variable. This equation has the
property that I(X;Z) = 0 if and only if X and Z are independent. Therefore, the MI quantifies the
interdependence between X and Z, including nonlinear correlations.

The MI is a special case of the well-known Kullback-Leibler (KL) divergence, DKL(PXZ ||PX ⊗PZ),
where PXZ is the joint probability distribution of X and Z, and PX ⊗ PZ is the product of the
marginals. The KL divergence can be cast in the Donsker-Varadhan representation (DVR) [41]:

I(X;Z) = − inf
T∈T

LDVR[T ] (2)

LDVR[T ] = −
(
EPXZ

[T ]− log
(
EPX⊗PZ

[
eT

]) )
. (3)

Given a finite dataset of (x, z) pairs, the expectations in Eq. (3) can be estimated from sample
averages. To estimate the second term, one can simply shuffle the x’s and z’s, as done in [40]. Then,
the DVR loss functional can be minimized using standard gradient descent over parameterized neural
networks T . For sufficiently expressive networks T , the infimum in Eq. (2) will be saturated, so
the minimum loss is an estimate of −I(X;Z).2 Taking the functional derivative of the DVR loss
functional with respect to T , we see that the minimum of L[T ] is obtained when:

T (x, z) = log
p(x|z)
p(x)

+ c , (4)

where c is an unimportant constant.Therefore, we can use T to extract the log-likelihood p(x|z).
This requires, as per the universal approximation theorem for machine learning, that the space of
neural networks T is sufficiently expressive, that there is enough training data, and that the gradient
descent algorithm successfully finds the minimum of Eq. (3). 3 Given this, which we will assume
going forward, we can then perform maximum likelihood inference given x, and assuming that the
likelihood is approximately Gaussian, even obtain the covariance matrix representing the inference
resolution:

ẑ(x) = argmax
z

T (x, z),
[
σ̂2
z(x)

]
ij
= −

[
∂2T (x, z)

∂zi ∂zj

]−1∣∣∣∣
z=ẑ

. (5)

2Numerical and analytic studies [40, 42], as well as our own empirical studies, show that the DVR loss has
better numerical convergence properties than similar losses.

3We note that these assumptions are common to every machine learning method for inference, even if they
are not explicitly stated.
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Crucially, this inference strategy for z is independent of the prior p(z), which is a property desirable
for calibration tasks. Unlike for standard regression [28], the learned estimate ẑ does not depend on
the distribution of z samples in the training set.

However, both the maximum likelihood estimate and local resolution in Eq. (5) are difficult to
evaluate numerically. The learned T may be highly non-convex and the true maxima difficult to find
using gradient descent. Additionally, second derivatives are numerically sensitive to the choice of
activation function in the neural network, especially the commonly used ReLU activation.

In order to facilitate a numerical estimate of the maximum likelihood and local resolution, we
introduce the following Gaussian Ansatz parametrization for T :

T (x, z) = A(x) +
(
z −B(x)

)
·D(x) +

1

2

(
z −B(x)

)T · C(x, z) ·
(
z −B(x)

)
, (6)

where A : RN −→ R , B : RN −→ RM , C : RN × RM −→ Sym(M,R), and D : RN −→ RM are
each neural networks. Unlike a Gaussian likelihood, the Gaussian Ansatz is highly expressive, and
is in fact a universal function approximator. Specifically, any function f(x, z) that admits a Taylor
expansion in z around B(x) can be expanded in this form. The functions A(x), D(x), and C(x)
capture the zeroth, first, and second (or higher) order dependencies of f on z, respectively.

The Gaussian Ansatz enables an elegant strategy to extract Eq. (5). Since the optimal T (x, z) is
bounded from above, we can take D(x) to be everywhere zero without loss of expressivity.4 In this
case, T will achieve critical values at z = B(x). Moreover, if C(x,B(x)) < 0, then these critical
values will yield (local) likelihood maxima and resolution estimates:

ẑ(x) = B(x), σ̂2
z(x) = −

[
C(x,B(x))

]−1
. (7)

Moreover, the (negative) loss of the Gaussian Ansatz with respect to the functional in Eq. (3) will be
a lower bound for the mutual information I(X;Z), which is saturated in the asymptotic limit. The
Gaussian Ansatz is therefore capable of estimating the maximum likelihood inferred value of z given
x, the local resolution on that inference, and the mutual information between X and Z, all at once,
with no additional postprocessing.

3 Case Study: Jet Energy Calibration

We now demonstrate the Gaussian Ansatz on a collider physics task: determining jet energy correc-
tions (JECs) and resolutions (JERs) [43]. Jets are collimated sprays of particles that are produced
ubiquitously in high-energy collisions. One does not have access to the “true” jet energy, however, be-
cause its constituent particles are filtered through a complicated and nonlinear detector response. This
is an inherently prior-independent task, as it would be undesirable for energy corrections to depend on
how often those energies appeared in the calibration set.This is an inherently prior-independent task,
as it would be undesirable for energy corrections to depend on how often those energies appeared in
the calibration set.

Assuming one has a good detector model (which one must assume anyways for any calibration
method), though, one can generate truth-level quantities (GEN, corresponding to Z) and then
simulate the detector response (SIM, corresponding to X). The JEC and JER factors are then defined
such that the inferred jet momenta and resolution are:

p̂T ≡ JEC × pT,SIM ≈ pT,GEN, σ̂pT
= JER × pT,SIM, (8)

where pT is the transverse momentum of the jet.

We use the same 2011 CMS Open Simulation [44] samples as in [45], which are based on dijets
generated in PYTHIA 6 [46] with a GEANT4-based [47] simulation of the CMS detector, in the
MIT Open Data (MOD) HDF5 format [48]. Each SIM event consists of a list of particle flow
candidates (PFCs), which are the reconstructed four-momentum and particle identification (PID)

4In practice, we find it convenient to start the training with non-zero D(x) to aid the convergence of the
model, and then numerically force D → 0 through an increasing L1 regularization. This helps the model achieve
a global, rather than local, minimum. In our jet calibration studies, we find that this significantly improves model
convergence.
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Table 1: Jet Energy Calibrations

Model Mean p̂T Mean σ̂pT
I(X;Z)

[GeV] [GeV]
DNN 698± 37.7 35.7± 2.1 1.23
EFN 695± 37.3 32.6± 2.3 1.26
PFN 697± 36.9 32.5± 2.5 1.27

PFN-PID 695± 35.1 30.8± 3.6 1.32
CMS 2011 695± 38.4 36.9± 1.7 –
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Figure 1: (Left) Gaussian Ansatz results for the four ML models, compared to the CMS 2011
baseline [43]. On a test dataset of GEN jets with pT ∈ [695, 705] GeV, we show the inferred p̂T , its
resolution σ̂pT

, and the learned mutual information between X = XSIM and Z = pT,GEN. (Right)
Learned JER distribution for the four models, compared to the CMS 2011 baseline.

for each measured particle. The PFCs are clustered into anti-kt jets with R = 0.5 [49, 50, 51].
For each jet, truth-level GEN jet information is also provided, as well as the CMS-prescribed JEC.
CMS-prescribed JERs are estimated using [43].

We select jets whose GEN transverse momentum is in the range pT ∈ [500, 1000] GeV, whose GEN
pseudorapidity satisfies |η| < 2.4, and that satisfy at least “medium” jet quality [52]. The latent
variable of interest is Z = pT,GEN, and the measured quantity X = XSIM is specified below. All
momenta are divided by a fixed scale of 1000 GeV. In total, 5× 106 jets are used for training.

We consider four different ML models, of increasing sophistication:

1. DNN: The input X = (pT , η, ϕ)SIM is the overall jet information, the same information used
in the CMS calibration procedure in [43]. The functions A, B, C, and D are constructed as
fully connected neural networks, with three hidden layers of size 64 and ReLU activations.

2. EFN: The input X consists of the entire set of PFC three-momenta. The functions A, B, C,
and D are constructed as Energy Flow Networks (EFNs) [53]. For each EFN, the Φ and
F functions (see [53]) consist of three hidden layers of respective sizes (50, 50, 64) with
ReLU activations. Since C is a function of both X and Z, the Z is appended as an input to
the F function.

3. PFN: The same as the EFN, but all networks are Particle Flow Networks (PFNs) [54, 53]
rather than EFNs.

4. PFN-PID: The same as the PFN model, but in addition to the 3-momenta of each PFC, the
reconstructed PID is included as an input feature. We follow the PID labeling scheme of
[53] for photons, charged hadrons, etc.

Each model is trained on a GPU cluster for 200 epochs using the ADAM optimizer [55], with a learning
rate of α = 10−4 and a batch size of 2048. All model parameters are given an L2 regularization loss
of λ2 = 10−6. The D network is given an overall L1 regularization loss of λD = 10−3 to slowly
force it to zero. Every 50 epochs, α is reduced by a factor of 5 and λD is increased by a factor of 10.

In Table 1, we show the results of the training in a narrow bin of pT,GEN ∈ [695, 705] GeV, though
we note importantly that our results below are qualitatively similar across the entire pT range, and
that only a single bin was chosen for ease of interpretation and visualization. If our models yield
unbiased estimators of the GEN pT , then the inferred p̂T distribution should be centered near 700
GeV, which it is for all models. We see indeed that the resolution improves with increasing model
sophistication, as does the mutual information I(X;Z), as expected. The PFN-PID model exhibits
the best resolution, which is roughly 15% better on average than the CMS baseline.

In Fig. 1, we show the distribution of σ̂pT
in the same pT,GEN ∈ [695, 705] GeV bin. As the model

sophistication increases, the resolution increases (i.e. the σ̂pT
shift downward). In principle, the

resolution should never degrade by adding more information, but we do find a long right tail for the
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PFN-PID model due to incomplete ML convergence.5 We conclude that the measured PFC momenta,
along with the PIDs, contain useful information for jet energy calibration that is lost when only
considering the total jet momentum.

4 Conclusion

In this paper, we presented an extension of the MINE framework, the Gaussian Ansatz, capable of
simultaneously performing frequentist inference, extracting Gaussian uncertainties, and quantifying
mutual information between random variables. All of these tasks are performed in a single training,
with no additional postprocessing. Using this framework, we can take advantage of the full jet particle
information in the CMS Open Simulation to improve the measured jet resolution by approximately
15%. Studies by the ATLAS collaboration have used sequential calibration on a handful of observables
to improve their resolution [56, 57, 58], and the Gaussian Ansatz may allow for further improvements
by allowing for simultaneous calibrations of any number of features. We look forward to further
developments in ML-based calibration and correlations methods in HEP and beyond.

Code and Data

The code for the general-use Gaussian Ansatz framework can be found here. The code and data for
the jet energy calibration study, in particular, are available here.
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Broader Impact

While a few physics-inspired applications of a prior-independent calibration have been considered in
this paper (and there are many more uses in physics, such the elimination of mass sculpting effects
and adoption in many physics experiments), there are a variety of broader applications. Due to
prior independence, the Gaussian Ansatz is a generic solution to the problem of imbalanced data
sets, wherein certain data may be over- or under-sampled. This can often be the case in datasets
where marginalized groups of people may be underrepresented in data. In addition, beyond its use
in scientific contexts, the ability of the Gaussian Ansatz to do manifest uncertainty estimation is
applicable to situations in which margins of error and safety in decision making are important, such
as in self-driving cars.
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in the dataset, though no additional uncertainties are included.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No] We only provide

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See discussion of

CMS Open Data and MOD in 3
(b) Did you mention the license of the assets? [N/A] CMS Open Data does does not

specify licensing
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [No] The data is publicly available.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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