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Abstract

We study learning weak solutions to nonlinear hyperbolic partial differential equa-
tions (H-PDE), which have been difficult to learn due to discontinuities in their
solutions. We use a physics-informed variant of the Fourier Neural Operator (π-
FNO) to learn the weak solutions. We empirically quantify the generalization/out-
of-sample error of the π-FNO solver as a function of input complexity, i.e., the
distributions of initial and boundary conditions. Our testing results show that
π-FNO generalizes well to unseen initial and boundary conditions. We find that
the generalization error grows linearly with input complexity. Further, adding
a physics-informed regularizer improved the prediction of discontinuities in the
solution. We use the Lighthill-Witham-Richards (LWR) traffic flow model as a
guiding example to illustrate the results.

1 Introduction

Hyperbolic partial differential equations (H-PDEs) arise in the study of nonlinear wave motion in
applications such as the behavior of water waves, vehicular traffic flow, and even in high-speed
physics like blast waves and sonic booms. Typically, (inviscid) H-PDEs are of the form ut+ cux = 0,
where u is a conserved quantity. Wave motion in H-PDEs is characterized by finite propagation speeds
c. The solutions are characteristic trajectories emanating from the datum (e.g., the initial conditions).
Nonlinear H-PDEs, where the nonlinearity results in different wave propagation speeds, e.g., c = c(u),
result in characteristic lines that may cross somewhere in the domain, and at those points, the solution
is multi-valued, which means that the problem does not have a solution in the classical sense. Here,
weak solutions that permit discontinuities are introduced, which are conventionally solved using finite
volume or finite difference-based numerical schemes [1, 2].

Recently, deep learning-based (DL) methods have appeared that aim to overcome the limitations of
conventional numerical solvers, namely, high computational cost, grid dependence, and knowledge
of complete initial and boundary conditions. The DL solvers have shown remarkable results for
both forward and inverse problems, especially where the PDE solutions are smooth [3, 4]. However,
DL solutions having high irregularities (e.g., discontinuities), such as those arising in the weak
solutions of H-PDEs, are only partially successful [5–8]. This is partly due to the ill-posedness of
H-PDEs, i.e., derivatives are not defined everywhere, and the H-PDE residuals do not form a correct
physics loss metric. Further, these studies lacked a systematic procedure to evaluate the out-of-sample
performance or the generalization error.

To this end, we explore Fourier Neural Operators (FNO) [4] for learning weak solutions of H-PDEs.
We propose a systematic training and testing experiment where the FNO solver is trained with
solutions of elementary input conditions and evaluated for solutions of general input conditions. We
quantify the empirical generalization error of the FNO solver as a function of the input complexity,
i.e., how the out-of-sample error grows as the distribution of input conditions becomes more general.
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To capture physically consistent weak solutions (e.g., shocks), we propose using an integral form of
the H-PDE (written in discrete form) as the physics loss function instead of the H-PDE residual. We
demonstrate these results using vehicular traffic flow as an example.

2 Methods

Problem setting We consider the LWR traffic flow model [9, 10] as the guiding example for
nonlinear scalar H-PDEs. The LWR model is a continuum description of the flow of vehicles on a
road. Consider a space-time domain Ω ⊂ R× R+. Denote by u(x, t) : Ω → [0, umax] the density of
traffic at position x ∈ R and time t ∈ R+. Here density refers to the average number of vehicles per
unit length. Let q(x, t) : Ω → [0, qmax] the traffic flux, which is the number of vehicles crossing a
point per unit time. The LWR model describes the evolution of traffic density based on the principle
of vehicular conservation:

ut + qx = 0; u(x, 0) = ū0; u(xb, t) = ūb; (x, t) ∈ Ω; (1)

where ut ≡ ∂u
∂t , ū0 is an initial condition, and ūb is a boundary condition. For the LWR model, one

typically prescribes a flux function q = f(u), where f(u) : [0, umax] → [0, qmax], which is concave
in the context of traffic flow. The LWR model is given as

ut + f ′(u)ux = 0; u(x, 0) = ū0; u(xb, t) = ūb; (x, t) ∈ Ω; (2)

We refer to (2) as the forward problem if ūb corresponds to solutions at the boundary points (xb, t) ∈
∂Ω and as the inverse problem if ūb is replaced with densities at random points in the domain Ω i.e.,
(xb, t) ∈ Ω. We use f(u) = uvmax(1− u/umax), where umax is the maximum traffic density and
vmax is the maximum traffic speed. A major difficulty in solving the forward problem is handling
discontinuities when they appear in the solution due to nonlinearity in the system. The inverse
problem poses the additional challenge that the boundary condition is unknown, and the solution
needs to be inferred from partially observed measurements. We tackle both challenges using a deep
learning-based solver, discussed below.

Fourier Neural Operator solver We are interested in learning the solution operator that maps the
input function a := (ū0, ūb) to the weak solution u(x, t) over Ω. Let the input function be a ∈ A
and output function be u ∈ U . The problem (2) can be rephrased as one of learning an operator
G : A → U . We approximate G using the Fourier Neural Operator (FNO) of Li et al. [4], represented
by the parametric model GΘ, and given by

û = GΘ(a) =
(
Q ◦ F (L) ◦ F (L−1) ◦ · · · ◦ F (2) ◦ F (1) ◦ P

)
(a) (3)

where {F (l)}Ll=1 is a set of Fourier operators while P and Q are projection operators. A single
Fourier operator is defined as

F(z) = σ
(
W · z + IFFT

(
R · FFT(z)

))
(4)

for any latent input z, where FFT and IFFT denote the Fourier transform and its inverse. Θ =
{W (l), R(l)}Ll=1 is the set of trainable parameters of the FNO operator GΘ. Our motivation for using
the FNO operator (3) is its efficient approximation in the Fourier domain and it ability to learn
complex dynamics [4]. The parameter complexity involved in learning GΘ depends on the size of R,
which is independent of the domain size |Ω|.

Physics-informed training The FNO model (3) can be trained end-to-end in a supervised learning
framework over an appropriately defined loss function. We perform physics-informed training where
the loss function has two parts − an empirical training data loss Ldata and a physics constraint loss
Lphys to emulate the PDE operator. Ldata is simply

∑
n∈N ||GΘ(a

(n)) − u(n)||2, where N is the
number of samples and u(n) is the nth sample solution.

One could use the PDE residual of (2) to form the physics loss Lphys, as in the conventional physics-
informed neural networks [3]. However, (2) is not a well-posed PDE, i.e., derivatives are not defined
everywhere, especially near discontinuities and hence not a well-defined loss metric. Thus, we resort
to the integral form of (2) to form the physics loss Lphys as follows:

Lphys =
∥∥∥〈u(x, t+∆t)− u(x, t) +

∆t

∆x
[q(x−∆x/2, t)− q(x+∆x/2, t)]

〉
(x,t)

∥∥∥
2

(5)
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where u(x, t) and q(x, t) are defined over a discretization of Ω, and ⟨·⟩(x,t) is a concatenation operator.
Accordingly, we train two different FNO models with two different objective functions, as shown
below:

(i) FNO model : min
Θ

Ldata (ii) π-FNO model : min
Θ

Ldata + λLphys (6)

Data and training experiments We obtain the training and testing dataset by numerically simulat-
ing (2) for different input conditions. The numerical scheme used for generating the datasets and the
FNO training codes is described in Appendix A and Appendix C.
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Figure 1: Initial and boundary conditions used for training and testing the FNO solver.

We perform systematic training and testing experiments to quantify the generalization performance
of the FNO solver. During training, the FNO solver is shown solutions of simple dynamics, for
instance, generated from step-wise initial conditions (a single vehicle queue) and one or two stepped
wavelet-like boundary conditions (emulating vehicles stopping at traffic lights). The FNO solver is
then tested with solutions of complex dynamics generated from general initial conditions (multiple
vehicle queues) and multi-stepped wavelet-like boundary conditions (multiple stops at traffic lights).
The set of initial and boundary conditions used in training and testing are shown in Figure 1. Training
data consists of solutions using inputs (i0-i3, b0-b2). Testing data are made of (i0-i9, b0-b2) for
evaluating initial conditions, and (i0-i3, b0-b8) for evaluating boundary conditions.

The goal is to train the FNO solver with simple solutions and assess the out-of-sample error as input
conditions become complex. For the LWR traffic flow example, the input complexity refers to (a)
how the vehicles are distributed spatially at time t = 0 (i.e., ū0) and (b) the impact of traffic signals
at the road exit x = xmax (i.e., boundary condition ūb). These two input factors put together can
generate complex dynamics u. Training details are summarized in Appendix B.

3 Results

Generalization error v/s input complexity The out-of-sample errors as a function of input
conditions are summarized in Figure 2. Each data point is the average mean absolute error (MAE) of
50 samples. A piece-wise linear trendline is fitted to the error plots. The trendline shows that MAE is
nearly constant for input conditions seen during training (i0-i3, b0-b2) and steadily increases for input
conditions at testing (i4-i9, b3-b9).
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Figure 2: Empirical generalization (out-of-sample) error as function of input conditions.
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We define the generalization error as the slope of this
trendline, summarized in Table 1. For instance, Figure 2
says that MAE increases by 0.141 vehs/km (+0.12%) for
every additional traffic light at the road exit ūb using π-
FNO model. Similarly, an additional non-uniformity in
the initial condition ū0 increases MAE by 0.142 vehs/km
(+0.12%).

Table 1: Error rates (vehs/km)

FNO π-FNO

ū0 ūb ū0 ūb

Forward 0.222 0.279 0.142 0.141
Inverse 0.210 0.211 0.085 0.194

Figure 2 concludes that the generalization error for the testing set grows linearly with the input
complexity for both the forward and inverse problems. Also, π-FNO incurs lower error rates
compared to the FNO model.

Sample predictions The predicted and true solutions for four different input conditions are shown
in Figure 3. The π-FNO solver is only shown density dynamics similar to Figure 3a at the training
stage. Figure 3b-3d are the density dynamics that π-FNO solver generalizes flawlessly. This implies
that the π-FNO solver learned to capture the traffic queuing dynamics (i.e., vehicle queue formation
and dissipation) as a function of the boundary flows. Also, the inverse problem results in Figure
3c, and 3d shows that π-FNO can qualitatively recover solution without knowledge of boundary
conditions but only with sparse trajectory measurements.
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Figure 3: Comparison of true and π-FNO predicted solutions. Sub-figure (a) is a training scenario,
and (b)-(d) are test scenarios. The dotted curve is the input locations of ūb for the inverse problem.

Physics-informing on the behavior of shock solutions In Figure 4, we compare solutions (zoomed-
in) for a constant and a step-wise initial conditions. We see that the FNO model (physics-uninformed)
produces noisy predictions, whereas the π-FNO model (physics-informed) smoothens these artifacts.
This suggests the benefits of physics-informing in producing physically consistent solutions.
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4 Summary and Discussion

We explored the Fourier Neural Operator (FNO) in learning the weak solutions of scalar non-linear
hyperbolic partial differential equations (H-PDEs), which has seen limited success in the deep

4



learning-based computational literature. We focused on quantifying the generalization error of the
FNO solver as a function of input complexity, taking vehicular traffic flow as an example. We found
that the FNO solver can be trained using simple solutions and can easily generalize to complex inputs
with an acceptable error tolerance − the out-of-sample errors grew linearly with input complexity.
We also showed the benefits of physics-informing in predicting physically consistent solutions, e.g.,
correct shock behavior. To the authors’ knowledge, this is the first empirical study on generalization
capabilities of learning-based solvers for non-linear H-PDEs.

A limitation of the current solver is that it requires a regular grid-like computational domain, partly
due to the Fourier Transform operator. Our efforts continue to extend these solvers to irregular
graph-like computational domains, e.g., to solve traffic flow on a city network.

5 Broader Impact

The modeling and control of dynamical systems such as road traffic, water supply, and communication
networks are fundamental in functioning large-scale urban cities, which contribute to one-third of
the global carbon footprint. The techniques developed in this study aid in building low-resource
computational tools for controlling these dynamical systems, which are often modeled as partial
differential equations. The data-driven learning paradigms studied in this work help advance the
development of edge computing infrastructures such as connected vehicles, smart personal gadgets,
and even augmented/virtual reality applications.
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A Godunov scheme for LWR simulation

The LWR traffic flow model can be solved using Godunov’s numerical scheme. Let i and j be the
space and time index, denote u(i,j) as the average traffic density for each cell (i, j). The traffic
density is updated as:

u(i,j+1) = u(i,j) +
∆t

∆x

[
q(i−1/2,j) − q(i+1/2,j)

]
(7)

where q(i−1/2,j) is the cell boundary flux from cell (i− 1, j) to cell (i, j). ∆t and ∆ x denote the
temporal and spatial width. The boundary flux is given by,

q(i−1/2,j) = min
{
Q

(i,j−1)
dem , Q(i,j)

sup

}
q(i+1/2,j) = min

{
Q

(i,j)
dem , Q(i,j+1)

sup

}
where

Q
(i,j)
dem =

{
f
(
u(i,j)

)
if u(i,j) ≤ ucr

qmax otherwise

Q(i,j)
sup =

{
f
(
u(i,j)

)
if u(i,j) > ucr

qmax otherwise
where f(u) is the traffic flux function (also called Fundamental relation in traffic flow literature)

f(u) = u(1− u/umax)vmax.

where vmax is maximum speed, umax is maximum density and qmax is the maximum traffic flux.
The above numerical scheme is run for different sets of initial and boundary conditions shown in
Figure 1. For the inverse problem, we draw random vehicle trajectories to represent ūb. For all the
testing, we used 10 random vehicle trajectories as the input.

B Hyperparameters and training details

The hyperparameters used in the study are summarized in Table 2. The training hyperparameters are
chosen by an independent trial-and-error experiment. We modified the original FNO implementation
from Li et al. [4] to implement the π-FNO model in python using the PyTorch machine learning
library; see Appendix C. The training was performed on a GPU cluster (NVIDIA Tesla V100 32GB)
and the total run time was around ∼ 45 min for a single training experiment.

Table 2: Hyper-parameters used in the study
LWR simulation FNO model FNO training
space dimension 1000 m # Fourier layers L 4 coefficient λ 2.0

time dimension 600 sec # modes in x dimension 24 # epochs 500

discretization size (50× 600) # modes in t dimension 128 batch size 128

cell width ∆x 20 m # latent width 64 learning rate 1e− 3

cell width ∆t 1 sec lifting operator P Linear layer
with depth 128 learning rate scheduler step-wise

max density umax 120 vehs/km optimizer Adam GD

max flow qmax 1800 vehs/hr lifting operator Q 2-layer FNN
with depth 128 # training samples 5200

# testing samples 400

The objective function coefficient λ is obtained by training a series of π-FNO models for λ =
{0, 0.05, 0.1, . . . , 0.95, 1.0}. The λ value corresponding to the least validation error is considered
optimal.

C Datasets and codes

The datasets, codes, and pretrained models are shared at https://github.com/bilzinet/pifno
under the MIT license.
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