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Abstract

Muons have proven to be excellent probes of new physical phenomena, but the
precision of traditional curvature-based measurements of their energy degrades
at high energies. Recent work has shown the feasibility of a new avenue for the
precise estimation of high-energy muons by exploiting the pattern of energy losses
in a dense, finely segmented calorimeter using convolutional neural networks
(CNNs). However, CNN predictions of the muon energy suffered from significant
bias, which hampers the reliability of traditional methods for quantifying the
uncertainty of the estimates. Indeed, to date, there is no known solution to the
general problem of producing reliable uncertainty estimates of internal parameters
of a statistical model from point predictions. In this paper, we propose WALDO,
a new method that reframes the Wald test and uses the Neyman construction to
convert point predictions into valid confidence sets. We show that WALDO achieves
confidence sets with correct coverage regardless of the true muon energy value,
while leveraging predictions from a CNN over a high-dimensional input space. In
addition, we show that despite an increasing dimensionality, WALDO is able to
extract useful information from a finer segmentation of the calorimeter, yielding
smaller confidence sets, and hence more precise estimates of the muon energies.

1 Introduction

Muons are essential in studies of fundamental physics because they have proven to be excellent
probes of new phenomena: the precise estimation of their energy and direction has allowed the
discovery of particles that produce muons in their decay, including the Higgs boson [1, 3, 4, 6, 13].
Traditionally, muon energy estimates rely only on a measurement of their momentum given the
curvature radius of the particle’s trajectory. At very high energies, this leads to low precision because
the trajectory becomes empirically indistinguishable from a straight line within practically achievable
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Figure 1: Schematic diagram of WALDO. The Neyman construction of confidence sets (bottom) requires
estimation of a test statistic τWALDO (left), and of critical values Cθ0,α across the whole parameters space
(center). Diagnostics (right) are then used to make sure that those confidence regions achieve the desired level
of conditional coverage. See Section 2.1 and Algorithm 1 for details.

magnetic fields. On the other hand, the probability of energy losses along the muon path increases
at high energy and within dense materials, lending itself to a complementary estimate based on the
detected energy released in calorimeters. Leveraging this fact, we pose two questions: (i) Can we
construct confidence sets with correct coverage of the true energy of ultra-relativistic muons using the
information contained in the pattern and magnitude of radiative deposits in a dense calorimeter? (ii)
Is it possible to extract additional information from finer segmentations of the calorimeter to allow
for tighter constraints (i.e., smaller confidence sets with correct coverage) on muon energy estimates?
If so, how large is the improvement? Quantifying the latter would allow scientists to optimize their
detector designs, since manufacturing very small calorimeter cells is expensive.

Following the work of Kieseler et al. (2022) [15], we use an idealized experiment with calorimetric
muon data simulated through GEANT4 [2]. This high-fidelity stochastic simulator encodes the
likelihood function only implicitly, thus making standard statistical tools unsuitable. Note that the
objective is to infer an unknown internal parameter θ – the muon energy – of the physical process that
generates the data, using just one observation x (the calorimetric energy deposits) and simulations
of the form {(θ(j),D(j))}Bj=1; that is, the observed sample size n = 1, hence D(j) = x(j). This is
a challenging inverse problem, which lends itself naturally to be tackled within a Likelihood-Free
Inference (LFI) setting. The work done in [12] was the first to investigate how the information carried
by muon-calorimeter interactions may be used to obtain estimates of muon energy in a particle
collider. The authors exploited 16 custom input features derived from the raw energy deposits to
predict muon energy using a gradient-boosted k-nearest-neighbor algorithm. This work was further
expanded in [15], which leveraged the granularity of high-dimensional calorimeter data and the
capacity of convolutional neural networks to improve the precision of muon energy estimates. Neural
networks are indeed particularly suited when inputs x are very high-dimensional (for energy deposits
in a calorimeter, x ∈ R51,200) and the outcome variable is a scalar quantity (muon energy θ). These
models have proved to be very powerful, but the above work also clearly showed that predictions
of θ suffered from a strong bias, mainly due to the low signal-to-noise ratio in the calorimeter data
at very high-energies. If used with conventional uncertainty quantification methods for prediction
algorithms, this leads to inaccurate uncertainties that do not guarantee the desired coverage level
across the parameter space, thereby hindering scientific conclusions.

To date, there is no known solution to the general problem of producing reliable uncertainty estimates
of internal parameters of a statistical model from point predictions. Here we introduce WALDO, a
novel method that reframes the Wald test [22] and uses the Neyman construction [18] to convert point
predictions into confidence sets R(D) such that

P(θ ∈ R(D)|θ) = 1− α, ∀θ ∈ Θ, (1)

that is, R(D) has correct conditional coverage across the whole parameter space. It does so by
leveraging prediction algorithms to compute a test statistic based on estimates of the conditional
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mean E[θ|D] and conditional variance V[θ|D]. Figure 1 summarizes the components of WALDO and
Algorithm 1 details the steps needed to construct R(D). We pair WALDO with the CNN of [15] and
show that the resulting confidence sets are both conditionally valid and also shorter than standard
prediction intervals in the muon energy problem. The code to reproduce our results is available
at https://github.com/anonymoussoftware/waldo. A flexible implementation of the whole
framework is available for installation on PyPI at https://pypi.org/project/lf2i/.

Notation We refer to the parameter of interest as θ ∈ Θ ⊂ R and to a sample of observable data
of size n as D = (x1, . . . ,xn), with xi ∈ X ⊂ Rd. Note that n is distinct from B,B′ and B′′, i.e.,
the number of simulations required at different steps of our method. For the muon energy problem,
we have n = 1 and D = x since each observation comes from a different parameter value. We
distinguish between observable data and actual observations by denoting the latter as D. We refer to
confidence regions as R(D). The terms “set”, “region” and “interval” are used interchangeably.

2 Methodology

Algorithm 1: Confidence set for θ via WALDO

1: // Estimate conditional mean and variance
2: Simulate T = {(θ(j),D(j))}Bj=1

3: Estimate E[θ|D] on T under squared error loss

4: Compute (θ(j) − E[θ|D(j)])2 ∀j = 1, . . . , B and
estimate V[θ|D] = E[(θ − E[θ|D])2|D]

5: // Estimate critical values
6: Simulate T ′ = {(θ(j),D(j))}B

′
j=1

7: Predict {Ê[θ|D(j)], V̂[θ|D(j)]}B
′

j=1

8: Compute {τ̂WALDO(D(j); θ(j))}B
′

j=1

9: Estimate critical values Cθ,α via quantile
regression of τ̂WALDO(D; θ) on θ

10: // Confidence set via Neyman inversion
11: Predict Ê[θ|D] and V̂[θ|D]

12: Predict Ĉθ0,α ∀θ0 ∈ Θgrid

13: InitializeR(D)← ∅
14: for θ0 ∈ Θgrid do

if τ̂WALDO(D; θ0) ≤ Ĉθ0;α then
R(D)←R(D) ∪ {θ0}

15: return confidence setR(D)

A key ingredient of WALDO is the equivalence
between hypothesis tests and confidence sets,
which was formalized by Neyman in 1937 [18]
and widely applied in high-energy physics [8, 9].
The basic idea is to invert a series of level-α
hypothesis tests of the form

H0 : θ = θ0 vs. H1 : θ ̸= θ0, (2)

for all θ0 ∈ Θ. After observing a sample D,
one constructs a confidence region R(D) for θ
by taking all values of θ0 that were not rejected
by the series of tests above. By construction,
the set R(D) satisfies Equation 1, i.e., it has the
correct 1− α coverage level across the entire Θ.
Albeit simple, the Neyman construction is hard
to implement in practice within an LFI setting
without resorting to large-n approximations like
Wilks’ theorem [23], since it requires estimating
critical values Cθ0,α that define the level-α ac-
ceptance region for every hypothesis test that we
invert. In the context of LFI, one usually either
resorts to asymptotic results [8, 16] or Monte
Carlo approaches [17, 21], but the latter become
computationally prohibitive as the dimensional-
ity of the parameter space increases [7].

Recently, [10, 11] proposed a fast construction of Neyman confidence sets with finite-n conditional
coverage in an LFI setting; the general machinery was referred to as likelihood-free frequentist
inference (LF2I). Assuming we have access to a simulator Fθ that can produce high-fidelity observable
data D at different parameter settings θ, LF2I breaks down the construction of a confidence set
(including diagnostics) into the following steps: (i) estimating a test statistic τ(D, θ) from a first
simulated set T , (ii) estimating critical values Cθ,α from a second simulated set T ′, (i) + (ii)
constructing the confidence set by retaining all θ for which the corresponding test does not reject
the null, and (iii) an independent check of the empirical conditional coverage P[θ ∈ R(D)|θ] of
the constructed set across all θ ∈ Θ using a third simulated set T ′′. Dalmasso et al. (2022) [11]
proved that, by using quantile regression for (ii), one can control type I error at level α for all θ ∈ Θ,
regardless of the test statistic. In their work, they defined likelihood-based test statistics estimated
via probabilistic classification, whereas we base our framework on a new test statistic that leverages
point predictions from algorithms such as CNNs (see Section 2.1).
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Figure 2: Muon energy estimates via calorimetric measurements of increasing dimensionality. WALDO
(blue, orange, red) guarantees nominal coverage (68.3%), while 1σ prediction intervals (green) under- or over-
cover in different regions of Θ and are wider on average than the corresponding WALDO intervals. Left: Energy
deposited by a θ ≈ 3.2 TeV muon entering a homogeneous lead tungstate calorimeter with 32×32×50 = 51,200
cells. Center: empirical coverage estimated via WALDO diagnostics: reliable inference requires coverage close
to the nominal level. Right: Median lengths of intervals: lower values imply higher precision (i.e., smaller sets).

2.1 WALDO: bridging classical statistics with prediction algorithms

Since any test that controls type I error at level α may be used, we can exploit the one introduced by
Wald [22], which is based on the following test statistic: τWALD(D; θ0) := (θ̂MLE − θ0)

2/V(θ̂MLE),

where θ̂MLE is the maximum-likelihood estimator of θ and V(θ̂MLE) can be any consistent estimator
of its variance. WALDO replaces θ̂MLE and its variance in the Wald statistic with the typical output of
prediction algorithms. We define the WALDO test statistic as

τWALDO(D; θ0) :=
(E[θ|D]− θ0)

2

V[θ|D]
, (3)

where E[θ|D] and V[θ|D] are the conditional mean and variance of θ given the data D, respectively.
We can then replace the step (i) in the LF2I machinery in the following way: Estimate E[θ|D] and
V[θ|D] by leveraging the fact that prediction algorithms approximate the conditional mean of the
outcome variable given the inputs D, when minimizing the squared error loss. The predictor is trained
on a simulated set T = {(θ(j),D(j))}Bj=1, where θ can be drawn from any prior distribution πθ.

Remark. Note that the building blocks of the WALDO test statistic in Equation 3 can also be seen
as the posterior mean E[θ|D] and posterior variance V[θ|D]. We can then leverage modern neural
posterior estimators (such as normalizing flows [19]) and approximate the above quantities via Monte
Carlo sampling from the estimated posterior distribution. This variant of the approach is particularly
amenable for settings with multiple parameters of interest and observed samples of size n > 1.

3 Measuring high-energy muons with a finely segmented calorimeter

We now return to the main goal of this work: constructing valid (correct conditional coverage) and
precise (tight) confidence sets for high-energy muons using the pattern and magnitude of the radiated
energy deposits in a dense calorimeter, which would then address the key questions (i) and (ii)
outlined in Section 1. We have available 886,716 3D input “images” x and scalar true muon energies
θ obtained through GEANT4 [2], a high-fidelity stochastic simulator. See Figure 2 (left panel) for
an illustration of one simulated xi for a particular θi. The data are available in [14]. As the interest
is on constraining muon energies as much as possible while guaranteeing conditional coverage, we
use three versions of the same dataset with increasing dimensionality: a 1D input equal to the sum
over all calorimeter cells with deposited energy E > 0.1 GeV, for each muon; 28 custom features
extracted from the spatial and energy information of the calorimeter cells as described in [15]; and
the full calorimeter measurements (xi ∈ R51,200). For the first two datasets, we estimate E[θ|D] and
V[θ|D] via Gradient Boosted Trees [5]. For the full calorimeter data, we leverage the CNN developed
in [15]. We use Gradient Boosted Trees for quantile regression [20].

Answering (i) in Section 1 affirmatively, Figure 2 (center) shows that confidence sets constructed with
WALDO achieve exact conditional coverage (68.3%) regardless of the dataset used. The corresponding
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1σ prediction intervals (E[θ|D] ±
√
V[θ|D]) using full calorimeter data, instead, exhibit over- or

under-coverage in different regions over Θ, which in the latter case means that prediction sets contain
the true value with much lower probability than anticipated. As for question (ii), we make two
observations (see Figure 2; right panel): First, using the raw higher-dimensional energy deposits with
WALDO allows to reduce the uncertainty around muon energies. Second, confidence sets constructed
with WALDO are even shorter than the corresponding prediction intervals, while also guaranteeing
conditional coverage.

Broader impact statement Our work introduces a new method, WALDO, that converts point
predictions into conditionally valid confidence sets of internal parameters in an LFI setting. By
leveraging its properties, we showed that (i) it is possible to construct confidence sets with correct
coverage for the energy of ultra-relativistic muons using their interactions with dense calorimeters;
and (ii) finer segmentations of the calorimeter carry additional information which Waldo can exploit to
further constrain muon energies. Domain sciences, particularly the physical sciences, routinely seek
to constrain parameters of interest using theoretical (or simulation) models together with experimental
data. Assuming we have access to a high-fidelity simulator, WALDO provides reliable constraints
that can be used to deduce trustworthy scientific conclusions in situations where other uncertainty
quantification methods are either unavailable, unreliable or inefficient.
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