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Abstract

Human missions to Mars will require rocket-powered descent through the Martian
atmosphere to safely land. Designing the propulsion system for these missions intro-
duces the following challenges: ensuring safety, sparsity of data to validate models,
and requirements for rapid predictions. ML offers opportunities for addressing
these challenges. We use ML methods to develop novel data-analytic tools that
support design analysis for enabling supersonic retropropulsion (SRP) technology
deployment. Accordingly, we propose a hierarchical physics-embedded data-driven
(HPDD) framework for predicting the key target quantity in SRP. HPDD model
is trained on experimental data from wind tunnel testing (small-scale rocket), and
the model exhibits promising accuracy and computational efficiency. Wind tunnel
testing in the future will provide more data for validation and enhancement of our
framework to further the understanding of SRP.

1 Introduction

Supersonic retropropulsion (SRP) is a type of powered descent that uses rocket propulsion against
freestream flow to decelerate a spacecraft. SRP is a critical technology for safely landing human-scale
vehicles on Mars [3, 9]. Figure 1 shows a Schlieren wind tunnel image of an SRP rocket exhaust
plume with freestream flow flowing from left to right [2].

Modeling SRP is challenging because safety is paramount, the available data is sparse, and conven-
tional high-fidelity modeling approaches can be prohibitively expensive (especially for engineering
design processes). To account for these challenges, our key objectives are to propose data-analytic
methods to develop models for predicting multi-nozzle plume physics, and analyze sensitivities for
enabling SRP technology.

Physics-informed ML is uniquely capable of addressing these challenges beyond traditional methods’
(analytical reduced-order models, computational fluid dynamics) capabilities in both modeling
accuracy and computational efficiency. We combine physical knowledge with the relatively small
wind tunnel dataset to ensure accuracy. Moreover, we believe that our modeling framework will
eventually aid in exploring novel rocket designs for faster engineering design.
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Figure 1: Schlieren image
data of rocket (horizontal black
rectangle) with visible exhaust
plume thrusting against super-
sonic freestream flow. The bow
shock is the curved edge that
spans figure from top to bottom.

Figure 2: Input feature space of our
data set for all nozzle configurations,
showing sparsity. Axes: total thrust
coefficient of rocket jet CTJ , Mach
number M , and angle of attack in de-
grees α◦.

ML allows us to effectively extract insights from the data to build an accurate and inexpensive model.
To reduce gaps in both understanding and data, we decided on three key objectives. First, we develop
and apply data-analysis methods to extract features that capture plume physics from wind tunnel
data to enable SRP deployment. Second, using this knowledge, we develop a hierarchical physics-
embedded data-driven (HPDD) framework for the key target quantity C (coefficient of aerodynamic
axial force) that captures plume physics, plume-aerodynamics interaction, and sensitivities. Third,
we reduce uncertainty by identifying data gaps to be filled by future wind tunnel tests. Overall, all
three objectives strive toward improved modeling capabilities of complicated plume structures and
associated physics, ultimately for enabling human Mars missions.

2 Method

2.1 Data

We use a dataset [2] from the NASA Langley Unitary Plan Wind Tunnel, consisting of 2500 data
points. The data has 168 features θ (67 independent features plus 101 engineered features), and 125
measurements. According to our physics intuition, the following are key features that span flight-
relevant spaces: Mach number M , total thrust coefficient of rocket jet CTJ , nozzle configuration
cϕqe (calculated by exponential of Morris-Mitchell Criterion [8]), angle of attack α, sideslip angle β,
freestream stagnation pressure PT∞, freestream static pressure P∞, freestream static temperature
T∞, freestream post-normal shock stagnation pressure PT2, and freestream Reynolds number Re∞.
The output measurements are pressure data from the pressure probes on the rocket forebody. Overall,
this dataset is high-dimensional with relatively few data points.

To pre-process this data, we use Lagrange interpolation with Delaunay triangulation to compute C
from the measurements. This maps the 125-dimensional measurements vector to a scalar. Figure 2
shows three features relevant to rocket propulsion; the data is sparse across CTJ and M . Due to data
limitations, we focus on the supersonic regime; if given more comprehensive data, we could examine
model extrapolation ability to other regimes.

2.2 Modeling framework

Using the data described above, we aspire to develop a HPDD model that accurately and cost-
efficiently predicts C over a range of flight-relevant operating conditions. We seek to address the
following limitations of solely relying on neural networks (NN) for regression. First, because of their
low interpretability, it can be difficult to anticipate their outputs. We are working with a safety-critical
application, where failure can cause loss of human life, therefore we require well-behaved outputs.
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Second, NNs are not necessarily able to generalize to problems that are outside of the given data
space, especially given the limited scope of our experimental dataset.

We address the above limitations by first leveraging physical knowledge to both reduce our dependence
on the NN, and enhance our NN design. Physics shows that for a given thrust regime, the magnitudes
of the SRP targets are related [10]; therefore, we use one fully connected NN to regress residuals,
rather than using one NN for each target. Physical knowledge also enhances the model’s robustness
and generalization capabilities for unexplored rocket designs.

To accomplish our key objectives, we introduce a hierarchical physics-embedded data-driven frame-
work which combines ML with physics knowledge. Existing work for relevant applications [9, 1]
provides physical interpretation, while the available data improves accuracy (and thus safety) by
compensating for limitations introduced by the physics-based model. This hybrid approach (closely
resembling [6]) also requires less data than purely data-driven approaches. With this, our data-driven
framework F can be written as:

F (θp, θc, θu) = P(θp) ∗ C(θc) + U(θu), (1)
where P is a physics-embedded reduced-order model that describes plume-interaction and coalescence
[9, 1]. C is a coupling function that uses a NN to model non-linear phenomena and is based on
data-driven algorithms. U is an uncertainty quantification model to improve interpretability of F . For
the inputs, we desire θp ⊂ θc ⊂ θ construction; section 2.3 will show how we use both data analytics
and physics knowledge to robustly identify the important features of the SRP flow field.

We want to compare cases where the rocket is off/on. To this end, we convert Equation (1) into an
additive HPDD model for C:

C = C0 + CSRP︸ ︷︷ ︸
P(θp)

+CNN︸ ︷︷ ︸
C(θc)

(2)

The additive form of Equation (2) allows us to examine the contribution of each term, and is useful
for gaining insight into how turning the rocket on affects C. C is the sum of a zero thrust vehicle
model C0 (rocket off), a model with SRP CSRP (rocket on), and a multilayer perceptron residual
regression model CNN .

2.3 Identify input feature sets

We apply both unsupervised and supervised data-driven feature selection algorithms to inform our
choice of a salient input set θp to characterize P . The algorithms are: principal component analysis
(PCA) with 3 principal components to identify correlations in the input space, correlation heatmap to
quantify input-output relationship strength, and random forest (RF) with 200 trees to quantify input
importance. Figure 3 shows our heatmap result, and figure 4 shows our RF regressor result with
target C. Physical intuition in addition to both PCA and the heatmap emphasize the importance of
M . Both the heatmap and RF emphasize the importance of CTJ and cϕqe. Our physical intuition
informs us that α is important. Therefore, we determine θp = {M,CTJ , cϕqe, α}.

To find the input set θc for CNN , we use physical knowledge [9, 1, 5, 7] and domain expertise to
determine θc = {M,CTJ , cϕqe, α, β, PT∞, P∞, T∞, PT2, Re∞}.

Figure 3: Heatmap relationship strength.

Figure 4: Feature importance using RF. CTJ ,
and cϕqe are the most important features. This
result is consistent with heatmap result.
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2.4 NN setup and computational cost

We use Keras [4] to train a feedforward NN residual model using as input θc, and as target C. Our
normalization technique is linear scaling. We perform small scale hyperparameter search, architecture
search, and algorithm search to determine the following NN architecture. We use four hidden dense
layers where the number of neurons is 400, 200, 100, and 50; the NN has 109,954 total parameters.
Each hidden layer uses ReLU activation, and we reduce overfitting through the use of 30% dropout.
We optimize using Adam (learning rate = 0.001, β1 = 0.9, β2 = 0.999, ϵ = 10−7) with respect to
mean squared error loss. Our train/validation/test split is 80/10/10, and we train for 100 epochs with
a batch size of 5 data points. We spend 105 seconds training, and we set the seed equal to 0 for
reproducibility. Finally, our model spends on average 0.03 seconds per prediction (hardware: i7-
9750H CPU, 2.6GHz), meaning there is potential for real-time vehicular deployment with dynamics
and controls systems.

3 Results

Equation (3) presents our HPDD model for C:

C =
4 tan(δ)

γM2

(
2γM2 − (γ − 1)

γ + 1
− 1

)
cos1.3(α)︸ ︷︷ ︸

Zero thrust vehicle model C0

+
L

1 + e−k(CTJ−x0)︸ ︷︷ ︸
Model with SRP CSRP

+CNN (θc)︸ ︷︷ ︸
NN residual

(3)

We account for curved shocks by fitting δ = ϕ◦
r + 0.372M2 − 3.467M − 38.422, where ϕr is

half-angle of rocket forebody. γ is ratio of specific heats, assumed constant value of 1.4. C0 is based
on functional forms from literature [1, 9]. CSRP uses knowledge of plume structure transition physics
[10] to inform our choice to use the logistic function as the basis function for fitting. We account for
Mach effects using data to fit L = −0.0124M2+0.1186M−1.663. We model multi-nozzle physical
effects using data to fit k and x0 as follows: k = e−3(cϕqe−1.6) + 6, and x0 = −e−1.05cϕqe + 0.6.
Finally, we add CNN according to Equation (2).

(a) Various rocket nozzles. (b) 1 nozzle. (c) 3 nozzles.

Figure 5: Model plotted against test data points for M = 3.5, α = 0◦, and β = 0◦.

Figure 5 plots HPDD model predictions against data points from the test set. Figures 5b and 5c show
that the zero thrust vehicle model accurately fits the data points when CTJ = 0. Moreover, the model
with SRP decreases C as CTJ increases because of expanding plume blockage. The NN residual
regression provides small corrections, that account for non-linear coupling, in the low thrust regime
where both turbulence and unsteadiness can be observed in the Schlieren image data. Figure 5b shows
reasonable extrapolations (for CTJ > 3) that are consistent with physical knowledge [9]. We are
confident in the accuracy and interpretability of our NN because it consistently provides very small
magnitude corrections in the flight-relevant regime (high thrust) [3]; high thrust inputs cause the NN
to deactivate. Such a well-behaved result supports the safety-critical dimension of our application.

4 Conclusions

Overall, we propose a hierarchical physics-embedded data-driven framework that leverages limited
data for enhancing safety and computational-efficiency for enabling SRP technology. This framework
consists of a low-order physical model, an ML coupling function, and uncertainty quantification. P
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ensures accurate interpolations and extrapolations, while C exploits the ability of ML to fit non-linear,
usually elusive, phenomenon (ex. rocket exhaust plume coalescence [7]). We use data-driven methods
to verify inputs for the physics-embedded model, and we use physics domain knowledge to determine
inputs for the ML model.

We believe the above results are promising and will extend our framework to other targets in the
future. As more future work, we will validate our models with more data (i.e. 4 nozzles), employ
rigorous uncertainty quantification, and potentially extend our modeling framework to other regimes
(ex. transonic, subsonic). Ultimately, we hope to see its application on a human spacecraft to Mars in
the not-too-distant future.

Broader impact statement

There would be at least two potential positive impacts generated by more accurate and affordable
modeling of SRP. First, it can better inform the engineering design of human-scale Mars landers
because our models’ insights improve the understanding of SRP physics. That means our models
can enable faster prototyping if they are determined to be appropriate for use in conjunction with
prototype testing of landers. Second, the versatility of our modeling framework means that it has the
potential to be adapted to solve related problems in rocket propulsion. In terms of potential negative
societal impacts, model extrapolation can have unexpected consequences during prototype testing. If
the model’s output is inaccurate compared to tests, we can enhance the model; additionally, we can
introduce uncertainty quantification to provide estimates on the uncertainty of the model.
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