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Abstract

Soil and groundwater contamination is a pervasive problem at thousands of lo-
cations across the world. Contaminated sites often require decades to remediate
or to monitor natural attenuation. Climate change exacerbates the long-term site
management problem because extreme precipitation and/or shifts in precipita-
tion/evapotranspiration regimes could re-mobilize contaminants and proliferate
affected groundwater. To quickly assess the spatiotemporal variations of ground-
water contamination under uncertain climate disturbances, we developed a physics-
informed machine learning surrogate model using U-Net enhanced Fourier Neural
Operator (U-FNO) to solve Partial Differential Equations (PDEs) of groundwa-
ter flow and transport simulations at the site scale. We develop a combined loss
function that includes both data-driven factors and physical boundary constraints at
multiple spatiotemporal scales. Our U-FNOs can reliably predict the spatiotempo-
ral variations of groundwater flow and contaminant transport properties from 1954
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to 2100 with realistic climate projections. In parallel, we develop a convolutional
autoencoder combined with online clustering to reduce the dimensionality of the
vast historical and projected climate data by quantifying climatic region similarities
across the United States. The ML-based unique climate clusters provide climate
projections for the surrogate modeling and help return reliable future recharge
rate projections immediately without querying large climate datasets. In all, this
Multi-scale Digital Twin work can advance the field of environmental remediation
under climate change.

1 Introduction

Soil and groundwater contamination occurs across the world with highly variable climate, geology
and geographical conditions as well as with various contaminant types from industrial or agricultural
activities, to nuclear and battery waste storage. These sites must be carefully managed to prevent
hazardous materials from causing harm to humans, wildlife, and ecological systems. Additional
challenges arise and exacerbate risks due to global climate change. Uncertain climate scenarios can
impact the water balance in dynamic or disruptive the system and remobilize contaminants.

In this paper, we integrate the recent advances in machine learning (ML) and physical simulation to
predict the spatiotemporal dynamics of the subsurface contamination under future climate changes for
decision-makers and site managers. We incorporate multi-scale uncertainties in physical simulations:
uncertain global climate projections and uncertain local soil and subsurface properties. Specifically,
we develop a multi-scale digital twin with two aspects: 1) ML-based surrogate model: we develop a
ML surrogate model using neural operator learning [10, 9, 15] to solve Partial Differential Equations
(PDEs) for complex flow and transport physical simulations rapidly, and 2) Unsupervised climate
data clustering: we perform an unsupervised clustering of climate data from all different global
climate models and classify the United States into a set of representative climate regions to facilitate
a rapid access to the climate data for any target location.

We first run stochastic simulations of groundwater flow and contaminant transport physics, using
Amanzi [13] at the testbed: the Department of Energy’s Savannah River Site F-Area [11, 16] with
uncertain subsurface, soil and climate factors. We then develop a surrogate model to address the
computational challenge of solving a complex groundwater flow and contaminant transport model.
In parallel, to address the one of intractable data size of global climate model datasets [8], climate
data clustering quantifies uncertain projections of precipitation and evapotranspiration (ET), thereby
providing climate inputs for groundwater systems without downloading large amount of climate data.

2 ML-based surrogate modeling for groundwater systems

The intersection of physics and ML provides a rich space to build models with the advantages of
high-dimensional data-driven learning while maintaining (and even guiding) physical constraints and
laws. One popular method is called neural operator learning [12, 10, 9], using neural network to learn
mesh-independent, resolution-invariant solution operators for PDEs. Using neural operator learning,
we aim to learn a fast surrogate model for groundwater systems based on the physical simulation
datasets of groundwater flow and contaminant transport models. The input of our datasets includes
uncertain soil, subsurface, and climate properties (precipitation and ET: see Section 3) m(x, t)
for a groundwater system, the output includes the flow and transport properties y(x, t) such as the
spatiotemporal contaminant concentration. x is the location vector in 2D spatial cross-section, t is the
time variable ranging from 1954 to 2100.
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2.1 Architectures: U-FNO-3D and U-FNO-2D

We build two different neural operator architectures (U-FNO-3D and U-FNO-2D) to predict
spatial-temporal contaminant concentration and groundwater flow properties. Both of these two
architectures have Fourier Neural Operator (FNO) with enhanced U-Net architecture (U-FNO)
[10, 15]. FNO has linear transformations in Fourier frequency modes so that FNO can represent
any resolution with additional back transformation. U-FNO adds an additional U-Net architec-
ture for each Fourier layer, achieving a lower test error for multi-phase flow predictions [15].

Figure 1: U-FNOs architectures

Our two architectures ad-
dress the temporal dimen-
sion differently. U-FNO-
3D takes all input time-
series groundwater model
parameters m(x, t) and pre-
dicts all contaminant con-
centrations for different
time steps together y(x, t).
U-FNO-2D uses a recurrent
network: U-FNO-2D learns
the physics between every
fixed time interval ∆t. The
initial stage t = 0 for U-FNO-2D does not have the prediction from the previous step. Then we
train another U-FNO-2D model (the green block in Figure 1b) for the initial stage t = 0 with the
input m(x, 0) and the output y(x, 0). The advantage of U-FNO-2D is that we can preserve the time
dependency, where the output y(x, t∗) is only determined by the input before and at time t∗. However,
this additional time dependency makes the training of U-FNO-2D practically harder and hence the
training takes longer time. There are also accumulated errors through the recurrent neural network.

2.2 Hybrid physics-based and data-driven loss functions

We introduce four different loss functions that include both data-driven factors and physical boundary
constraints. Our surrogate model predicts transient flow ĥ(x, t) and transport ĉ(x, t) properties
ŷ(x, t) = {ĥ(x, t), ĉ(x, t)} where the ground truth are from numerical solvers. Therefore the designed
loss functions target the data-driven mismatch between predictions ŷ(x, t) and y(x, t), and more
interestingly, the physical constraints for solving PDEs such as boundary conditions.

Mean Relative Error: We first quantify the data-driven mismatch using the mean relative error (MRE)
between ℓ2 norm:

LMRE(y, ŷ) =
∥y − ŷ∥2
∥y∥2

. (1)

Spatial derivatives: Additional mismatch on first derivatives in the horizontal direction x and the
vertical direction z are also included.

Lder(y, ŷ) =
∥∂y/∂x− ∂ŷ/∂x∥2

∥∂y/∂x∥2
+

∥∂y/∂z − ∂ŷ/∂z∥2
∥∂y/∂z∥2

. (2)

Spatial derivatives on the contaminant boundary: Maximum Contaminant Level (MCL) is the
highest level of a contaminant that is allowed in drinking water recommended by the Environmental
Protection Agency (EPA) [11]. Therefore, predicting the boundary of contaminant with higher
concentration than the MCL is essential for site managers to protect water supply. We add first
derivatives on the contaminant boundary c ≥ MCL.

Lconc(y, ŷ) =
∥∂c′/∂x− ∂ĉ′/∂x∥2

∥∂c′/∂x∥2
+

∥∂c′/∂z − ∂ĉ′/∂z∥2
∥∂c′/∂z∥2

,

where c′ =

{
0, c < MCL

1, c ≥ MCL
, ĉ′ =

{
0, ĉ < MCL

1, ĉ ≥ MCL
(3)
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(a) Climate autoencoders.
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(b) Clustering similarity.
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(c) Frequent cluster labels between 2061–2099.

Figure 2: Architecture of climate autoencoders and evaluation of the results. (a) Features from two
different autoencoders (i.e., precip. and ET.) are used for online clustering. (b) Similarity of cluster
assignments along training. We calculate normalized mutual information (NMI) against labels from
400 epoch. Along training, clustering assignments evolves along training. (c) Spatial pattern of the
most frequent cluster per grid between 2061–2099. Note that, we sort the clusters based on the mean
precipitation within the cluster in descending order. Thus, small cluster numbers (e.g., #1) represent
wet climate. While the frequent cluster patterns dominant by #1 and #5, monthly cluster patterns
show spatiotemporal diversity.

Physics-informed boundary conditions: We add no flow boundary condition constraints in loss
functions using physics-informed neural networks [14] to help solving the PDEs. The boundary of
the spatial domain D is ∂D.

LBC(ŷ) = ∥ĥ|∂D∥2. (4)

The final loss function combines all above loss functions.

L(y, ŷ) = LMRE(y, ŷ) + β1Lder(y, ŷ) + β2Lconc(y, ŷ) + β3LBC(ŷ) (5)

3 Unsupervised climate data clustering

Climate data clustering leverages convolutional autoencoders to reduce the dimensionality of
continental-scale climate simulation outputs and performs a spatial-temporal cluster analysis, which
help stakeholders to get a realistic recharge rate immediately in order to evaluate the groundwater
flow anywhere across the continental US (CONUS). Note that median of precipitation and ET values
from each resulting cluster will be used as inputs of the surrogate models (see in Section 2) in future
work.

We use monthly precipitation and ET values from GFDL-ESM2G [6, 7] that participated CMIP5 over
CONUS. We remove the 3-month-running mean and then standardize the monthly data so that our
deseasonalizing approach removes the recurrent patterns but remains the climatological anomalies.
We spatially subdivide each three months image into a 16 pixels × 16 pixels scale, ≈ 2◦ × 2◦ area,
giving a smaller geographical and temporal unit, patch. We train our approach with 70% of only
historical (1950–2020) patches (we leave 30% for inference) for 400 epochs on 4 K80 NVIDIA GPUs
at a GCP instance to account for the future climate impact in inference.

While scalable clustering algorithms are widely available [2], an end-to-end autoencoder (see Fig-
ure 2a) and clustering training can further benefit the scalability. A joint loss function [1] formulates
a combination of both reconstruction and clustering loss terms:

Ljoint(θ) = λreconstLreconst(θ) + λclusteringLclustering(θ), (6)
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Table 1: Mean relative errors (MRE) and mean squared errors (MSE) for all experiments.
Index Architectures Epochs Loss (β1, β2, β3) MRE MSE Dataset
1 FNO-2D 30 (0,0,0) 0.051 2.71e-4 

Validation

2 FNO-3D 30 (0,0,0) 0.055 2.98e-4
3 U-FNO-2D 30 (0,0,0) 0.035 1.51e-4
4 U-FNO-3D 30 (0,0,0) 0.037 1.29e-4
5 U-FNO-3D 30 (0.1,0,0) 0.029 8.83e-5
6 U-FNO-3D 30 (0,0.1,0) 0.033 1.10e-4
7 U-FNO-3D 30 (0,0,0.1) 0.034 1.27e-4
8 U-FNO-3D 30 (0.1,0.1,0.1) 0.028 8.14e-5
9 U-FNO-2D 150 (0.1,0.1,0.1) 0.020 4.49e-5

}
Test10 U-FNO-3D 150 (0.1,0.1,0.1) 0.014 2.44e-5

where Lreconst corresponds to L2 loss that quantifies the difference between a training data x and
output of autoencoder Dθ(Eθ(x)); Lclustering term learns clustering assignments via online fashion;
two coefficients λreconst and λclustering balance the two terms to achieve smoother optimization and
better representations. The learned representation via the end-to-end clustering approach reflects the
association of group features of clusters by optimizing the joint loss function with Eq. 6.

Our Lclustering is motivated by an online method [4] with simplifying the cross entropy loss between
two cluster assignment: “codes” qc via the Sinkhorn-Knopp algorithm [5] and pc that is computed as
“prediction” obtained with a softmax of the dot product of K trainable prototype {c1, · · · , cK} and
the latent representation zc = Eθ(x). We calculate the dot product with an output layer from a single
layer perceptron Fp such that z⊤c c = Fp(Eθ(x)). Thus the second loss term in Eq. 6 is

Lclustering(θ) = −
∑
k∈K

q(k)c log (pc) where p(k)c =
exp

(
1
τ z

⊤
c ck

)∑
k′ exp

(
1
τ z

⊤
c c′k

) . (7)

Figure 2c shows a spatial distribution of the most frequent cluster at each patch location for 2061–
2099. Cluster numbers are sorted in descending order by the mean precipitation per patch. Our
cluster’s climatological field is dominant by cluster #1 (i.e., the wettest cluster) and #5 (i.e., the driest
climate cluster) over the CONUS. We also observe that #1 overlaps with humid subtropical climate
zone (Cfa) and humid continental climate zone (Dfa) of a new and improved Koppen-Geiger climate
classification [3] and #5 is spatially associated with their semi-arid (BS) and desert (BW) climate
types, suggesting that our clusters capture physically meaningful spatial patterns.

4 Evaluation of different architectures and loss functions

We have in total 664 physical simulations from the Amanzi model with uncertain soil, subsurface
and climate inputs. We split our dataset into training, validation, and testing (8:1:1) subsets. Table 1
(Index 1-4) shows the additional U-Net architecture gives us lower MRE and MSE on the validation
dataset for both FNO-2D and FNO-3D architectures. In practice, U-FNO-3D trains around 4×
faster (30 epochs, U-FNO-3D: 72 minutes, U-FNO-2D: 273 minutes). Therefore, we test our hybrid
physics-based and data-driven loss functions on U-FNO-3D (Index 5-8 in Table 1) . Every part of
loss functions in Eq. 5, when βi ̸= 0, reduces the MRE and MSE error. We have the lowest validation
error when adding all spatial derivatives and no flow boundaries (β1 = β2 = β3 = 0.1, Index 9-10,
in Table 1). U-FNO-3D with all three combined loss functions achieves the lowest MRE and MSE
after training 150 epochs on a A-100 NVIDIA GPU at a GCP instance.

In summary, we have successfully developed the ML-based multi-scale digital twin. At the site
scale, our ML-based surrogate model predicts spatiotemporal flow and contaminant transport rapidly,
which saves computational times to solve PDEs, and thereby supports rapid decision-making for site
managers. At the CONUS scale, our proposed unsupervised approach reduces the dimensionality of
the vast historical and projected climate data to capture five unique climate patterns and provides
lightweight climate projections for the site-scale model. We believe that more climate resilience
analysis for other contamination sites can benefit from our method in this paper to develop the
groundwater flow and contaminant transport surrogate model, accounting for the climate uncertainty.
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Broad Impact

With tools for fast and reliable contaminant plume prediction under future climate scenarios, site
managers and decision makers can evaluate the potential consequences and take rapid actions. We
believe that more climate resilience analysis for other contamination sites can benefit from the method
utilized in this paper to develop the groundwater flow and transport surrogate model. The use of
clustering in the latent space of autoencoders on climate data for building representative climate
regions can be extended to other applications in addition to using AI to create surrogate models.
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