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Abstract

Light propagates from the object through the optics up to the sensor to create an
image. Once the raw data is collected, it is processed through a complex image
signal processing (ISP) pipeline to produce an image compatible with human
perception. However, this processing is rarely considered in machine learning
modelling because available benchmark data sets are generally not in raw format.
This study shows how to embed the forward acquisition process into the machine
learning model. We consider the optical system and the ISP separately. Following
the acquisition process, we start from a drone and airship image dataset to emulate
realistic satellite raw images with on-demand parameters. The end-to-end process
is built to resemble the optics and sensor of the satellite setup. These parameters
are satellite mirror size, focal length, pixel size and pattern, exposure time and
atmospheric haze. After raw data collection, the ISP plays a crucial role in neural
network robustness. We jointly optimize a parameterized differentiable image
processing pipeline with a neural network model. This can lead to speed up and
stabilization of classifier training at a margin of up to 20% in validation accuracy.

1 Introduction

In most common supervised-learning models for computational imaging, the typical approach is to
feed the model with already processed images, extrapolate information and obtain a result depending
on the model’s task. Consequently, the model strictly depends on the data distribution, learning
its spatial features and noise model statistics. However, [17] points out that perturbations applied
to an already processed image can produce artefacts that are not faithful to the physics of camera
processing. Furthermore, results in optics further support the concern that the noise obtained from an
image processing pipeline is distinct from noise added to an already processed image [18, 9]. Taking
a step back, the data which better resemble the object’s physical properties is the raw image collected
directly on the sensor. Data from all current sensors is processed first in the analogue and then in
the digital domain. This processing, however, if done with care, does not detract from the "rawness"
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of the data. Every image signal processing (ISP) pipeline introduces slight variations to the image,
irreversibly corrupting the original information.

In this study, we embedded physics prior knowledge into a machine learning model starting from the
object, through the optics, to the sensor. The aim is to open neural networks’ black box by combining
it with a well-known forward process, the white-box model. Having access to a well-defined white-
box model, we can embed its information inside the network in order to obtain a hybrid model where
we partially know how it should respond. The framework proposed is a hybrid model which combines
our physical knowledge of the optical setup, sensor calibration data and ISP with a less interpretable
learning process. Combining enables us to go beyond what is possible with augmentation [7, 5, 14]
and catalogue testing [10, 2, 13, 11].

Our main contributions are:

• Parametric ISP We embedded a parametric mathematical data model into the model
architecture. Given this differentiable forward model ϕproc, the gradient from the upstream
task model ϕtask can propagate to ϕproc. Thus, it enables the model to adapt to a specific
white-box forward process. The data model considered for this application is an image
signal process pipeline.

• Satellite Imagery Emulation We provide an explicit end-to-end parametric physics-based
emulation. Starting from the drone imagery, based on the optical setup, sensor calibration
properties and satellite dynamics, we emulated physically faithful satellite images. The
process is differentiable and can be integrated into the model as ϕproc.

2 Physics-based data processing

What is a raw image Image acquisition has traditionally been optimized for the human perception
of a scene [8, 16]. Hence imaging cameras, are usually calibrated to aid the human eye to perform
some downstream task. However, this process that gives rise to optical image data, which ultimately
forms the basis for downstream machine learning models, is rarely considered in the machine learning
robustness literature. Conversely, most research has been conducted on processed RGB image
representations. The raw sensor image xRAW obtained from a camera differs substantially from the
processed image that is used in conventional machine learning pipelines. A more precise term for
raw data would be “metrologically accurate” data, and it preserves the following properties:
1. The statistical uncertainty (also referred to as error or noise) of a given pixel is uncorrelated to
other pixels.
2. Each sample arises from a well-defined statistical distribution.
3. Pixels are unbiased, i.e. mean sample values accurately represent the amount of incident light.
These are necessary to apply standard statistical methods to data. The xRAW state appears like a grey
scale image with a grid structure. This grid is given by a colour filter array, commonly the Bayer
pattern, which lies over sensors [4]. The final RGB image v is the result of a series of transformations
applied to xRAW . For many steps in this process, different possible algorithms exist. Starting from
a single xRAW , all those possible combinations can generate an exponential number of possible
images that are slightly different in terms of colours, lighting and blur – variations that contribute to
dataset drift. In 1 a conventional pipeline from xRAW to the final RGB image v is depicted.

Raw dataset acquisition As scientifically calibrated and labelled raw data is, to the best of our
knowledge, currently not publicly available, we acquired two raw datasets as part of this study:
Raw-Microscopy and Raw-Drone [12] 1. Raw-Microscopy consists of expert annotated blood smear
microscope images. Raw-Drone comprises drone images with annotations of cars. Our motivation
behind the acquisition of these particular datasets was threefold. First, we wanted to ensure that
the acquired datasets provide good coverage of representative machine learning tasks, including
classification (Raw-Microscopy) and regression (Raw-Drone). Second, we wanted to collect data
on applications that, to our minds, are disposed toward positive welfare impact in today’s world,
including medicine (Raw-Microscopy) and environmental surveying (Raw-Drone). Third, the optical
and sensor forward model for a classical microscopy setup and drone has some similarities. We took
advantage of this architecture to build a general emulation framework.

1We make both datasets publicly available at https://zenodo.org/record/5235536
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Figure 1: Schematic illustration of an optical imaging pipeline, the data states and novel, raw-enabled
dataset drift controls. Data x transitions through different representations. The measurement process
yields metrologically accurate raw data xRAW , where the errors on each pixel are uncorrelated and
unbiased. From the raw sensor, state data undergoes stages of image signal processing (ISP) ϕproc,
the data model we consider here. Finally, the data is consumed by a machine learning task model
ϕtask which outputs y.

(b)(a)(a)
Raw Drone

Emulate SensorEmulate Readout Emulate Light Capture

Emulate Optics Emulate Dynamics

20000 40000 60000 10000 20000 3000015000 25000 35000

4120 4160 4200 4120 4160 4200 4050 4150 4250

Figure 2: Metrologically consistent imagery satellite emulation. a) Schematic representation of the
experimental setup. Raw images are collected with a drone flying at 250m. The emulated system is
a payload satellite at the height of 600km. b) Sample false-colour images and segmentation masks
(insets) at various stages of the emulation pipeline. The input image from the drone (top) is sharp,
highly resolved and has good contrast, and the car (Bayer-pattern zoom on the top left) is easily
recognized. The image is more and more degraded throughout the pipeline (images to the right and
below), and only a featureless blob remains of the car (Bayer-pattern zoom on the bottom left).

3 Methods

Emulated Satellite The proposed method emulates the acquisition process of an imaging satellite
payload starting from images collected with a drone [3]. A sketch of the emulated system is shown
in Fig. 2a. As a use case, the end-to-end emulation pipeline is built to mimic STREEGO satellite’s
sensor and optical acquisition properties [15, 1]. Fig. 2b shows a schematic representation of the
end-to-end process. The following will refer to the satellite system as target and the drone system
as source. The emulation pipeline takes the optical model, the system dynamics details and the
sensor properties of both the source and the target system. Given these ingredients, the emulation
process follows the forward target model along all the data acquisition pipelines. We can control
the output image quality through a set of parameters. Fixing a satellite’s height and pixel size,
the most significant parameters to control are the focal length of the optical system, the mirror’s
diameter and exposure time. The mirror diameter D affects the satellite’s point spread function and
collection efficiency. The diameter of the point spread function is inversely proportional to D, and
the collection efficiency scales as D2. A compromise must be made when choosing the exposure
time. A longer exposure time improves the signal-to-noise ratio but introduces motion blur due to
satellite motion. As a result, a point source is stretched out along the satellite trajectory. In a common
satellite, the balance between the object magnification and the field of view depends on the focal
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(a) Low intensity xRAW with ϕproc (b) High intensity xRAW with ϕproc
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Figure 3: Low (a) and high (b) intensity images processed by a frozen and a learned pipeline. This
dataset drift adjustment would not be possible with processed data typically used for machine learning
experiments. The plots in the rightmost column of each block display the mean of validation metrics
over five cross-validation runs. Error bars are reported as one standard deviation. Optimization steps
1439 and 915 correspond to epoch 60 into training.

length. Shortening focal lengths lead to a lower magnification and a broader angle of view. Since
we can cover only a limited area with the drone, we estimated the corresponding downsampling to
obtain the sub-image of the broader area covered by the satellite.

The parametrized data model The parametrized data model ϕproc maps a given raw image
xRAW to a RGB image. The data model is differentiable wrt. its parameters θ. This allows for
backpropagation of the gradient from the output of the task model ϕtask through the data model
ϕproc back to the raw sensor image xRAW . The forward model is defined as the composition of the
most common ISP transformations ϕproc =

∏
ϕi(θi) shown in Fig. 3. In the learned setting, the

data model parameters are jointly optimized with the task model parameters. In the frozen setting,
only the task model parameters are optimized, and the data model parameters are kept fixed.

4 Experiments

A parametrized data model ϕproc is paired with a task model ϕtask. Experiments are performed on high
and low-intensity images xRAW , in-silico generated with a decreased exposure time and resampled
with a calibrated noise model. In the left column (a) of Fig. 3 results on low intensity images are
compared. The learned data model is better able to accommodate the dataset drift as visible in the
improved stability of the learning trajectory. It exceeds that of the frozen data model (red line) by
up to 25 percent in accuracy at a lower variance. In fact, the processed image from a learned data
model (see learned column in block (a) of Fig. 3 for an example) can contain visible artifacts that aid
stability and generalization vis-a-vis the image from the frozen baseline data model which, arguably,
looks cleaner to the human eye. A possible explanation for the improved learning trajectory could
be that a varying processing pipeline automatically generates samples akin to data augmentation.
Such uses could be explored in scarce data settings like fine tuning, semi-supervised or few-shot
learning. Having gradient access to the data model thus allows optimizing data generation for a given
machine learning task. Suppose learned data models are to be applied in real-world applications.
Thus, it appears likely that a tradeoff has to be made between human perceived visual quality and
artefacts that can be helpful to the task model. For the segmentation task (bottom row of Fig. 3) the
stabilization effect is not observable. This could be due to the low resolution of the problem itself, as
the processing may not have a large effect on enhancing the solid blocks of cars in the raw data, as
well as evidence suggesting that inverse problems are inherently less unstable [6]. Similar outcomes
for stability and artefacts can also be observed for the reverse situation (high intensity) in the right
column (b) of Fig. 3).
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5 Discussion and Future works

We present how parameterized data models can be used to control dataset drift under physical
constraints. The differentiable forward model is optimized on a constrained range of parameters.
Therefore, to generalize the framework to a different, forward model, it is necessary to impose a prior
on the parameters’ physical boundaries for each transformation. Our experiment evaluated the model
on high and low intensity emulated images by emulating the sensor exposure time. Going beyond
physically faithful dataset drift controls, an interesting future extension to these experiments includes
training directly jointly with the emulation process to find the optimal optical and sensor parameters
for the downstream task model. Therefore, the metrologically accurate emulation can be used as prior
before the payload is physically built. For example, one could consider using the emulated images
for to optimize a super-resolution algorithm and then deploy the model on real satellite data.

6 Broader Impact

We propose an approach to embed optics, sensor and image processing prior knowledge into a neural
network model. The differentiable forward acquisition process is jointly optimized with the task
model. The forward model is controlled with physically constrained parameters. The prior knowledge
of the physics system is embedded through this parameters distribution. Adapting the forward
model, let the model explore this parameter space to find the optimal parameter configuration for the
downstream task model. Furthermore, the framework allows freezing the task model while optimizing
the forward model and vice versa. It is possible to use the framework to evaluate a pre-trained model
on several slightly different processing pipelines. A usage scenario is the prospective validation of
their task model to drift from different camera devices, for example, microscopes across different
labs, without having to collect measurements from the different devices. Furthermore, the optics and
sensor emulation can be deployed to make the task model resilient to different qualities of imaging
systems. For example, hospital imaging setups have not improved for decades. Suppose a model is
trained on the existing setup. If other images from better systems are added in the future, they can be
mapped back to the same quality this was trained on. This method allows a system developed for a
high-quality sensor to be verified also on older, lower quality systems.
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Checklist

The checklist follows the references. Please read the checklist guidelines carefully for information on
how to answer these questions. For each question, change the default [TODO] to [Yes] , [No] , or
[N/A] . You are strongly encouraged to include a justification to your answer, either by referencing
the appropriate section of your paper or providing a brief inline description. For example:

• Did you include the license to the code and datasets? [Yes] See Section 2

• Did you include the license to the code and datasets? [No] The code and the data are
proprietary.

• Did you include the license to the code and datasets? [N/A]

Please do not modify the questions and only use the provided macros for your answers. Note that the
Checklist section does not count towards the page limit. In your paper, please delete this instructions
block and only keep the Checklist section heading above along with the questions/answers below.

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Section 5
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] Data and code
are provided through an URL

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [No]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] See Fig. 3

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [No]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No]
(c) Did you include any new assets either in the supplemental material or as a URL? [No]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [No]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]
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