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Abstract

Simulation-based inference and normalizing flows have recently demonstrated
excellent performance when applied to gravitational-wave parameter estimation.
These methods can provide accurate results within seconds, in cases where classical
methods based on stochastic samplers may take days or even weeks. However, such
methods are typically based on deep neural networks and thus unable to reliably
deal with out-of-distribution data, such as may arise when predicted signal and
noise models do not precisely fit observations. We here present two innovations
to deal with this challenge. First, we introduce a probabilistic noise model to
augment the training data, making the inference network substantially more robust
to distribution shifts in experimental noise. Second, we apply importance sampling
to independently verify and correct inference results. This compensates for network
inaccuracies and flags failure cases via low sample efficiencies. We expect these
methods to be key components for the integration of deep learning techniques into
production pipelines for gravitational-wave analysis.

1 Introduction

Since 2015, the LIGO [1], Virgo [2] and KAGRA [3–5] gravitational wave (GW) observatories have
detected gravitational radiation from 90 astrophysical mergers of black holes or neutron stars [6–8].
Each of these is analyzed using Bayesian inference to compare against predictions from Einstein’s
theory of general relativity and determine the properties of the source. In turn, this has informed our
knowledge of extreme matter and gravity [9, 10], the formation and evolution of binaries [11], and
even the expansion of the universe [12].
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Observed data in each detector is a time series d, assumed to consist of a GW signal h(θ) and additive
noise n. The signal depends on 15 parameters θ, corresponding to the masses and spins of the binary
components, along with the orientation and location of the binary in space and time. The noise is
assumed to be stationary and Gaussian, described by a power spectral density (PSD) Sn, which can
vary across detectors and from event to event, and is typically estimated based on data around the
time of the event. Given the pair (d, Sn), Bayes’ theorem gives the posterior over parameters,

p(θ|d, Sn) =
p(d|θ, Sn)p(θ)

p(d|Sn)
, (1)

and the task of GW parameter estimation is to draw samples from this distribution.

The growing rate of GW detections demands fast sampling techniques to accurately infer parameters
for all observations. Standard inference codes are based on stochastic samplers [13, 14] that require
millions of expensive likelihood evaluations for each event. However, deep-learning techniques have
recently emerged as a promising tool [15–18]. In particular, the DINGO code often matches standard
samplers in terms of accuracy, while being orders of magnitude faster [15, 19].

Artificial neural networks require that training and test data be independent draws from the same
distribution. This is only the case when the measured GW data is consistent with the signal and noise
models. Since the detector noise PSDs vary with time [20] (e.g., due to detector improvements or
variations of the seismic noise), a network trained with an empiric PSD distribution at the beginning
of a LIGO-Virgo-KAGRA (LVK) observing run can only be used for a limited time—once the PSDs
change too much, the measured data become out-of-distribution (OOD). In section 2 we propose a
parameterized latent variable model for detector noise PSDs that can be used to augment training
data, enabling DINGO to better adapt to shifting distributions.

Even with accurate modeling of PSD variations one occasionally encounters OOD data due to
transient noise artifacts (glitches) or inaccuracies of the signal models [21]. In such cases, the
inference network could infer inaccurate results and one would have no means of knowing. In
section 3 we propose to combine neural importance sampling with DINGO. This provides rapid
verification and (in many cases) correction of results, and furthermore flags OOD data for further
investigation. This extended abstract summarizes two recent studies [22, 23]; for further details and
extensive empiric results on real data we refer to the original publications.

2 Adapting to noise distribution shifts

DINGO trains a conditional density estimator q(θ|d, Sn) parameterized with a normalizing flow
[24–26] to estimate p(θ|d, Sn). A trained network can then be used to draw posterior samples given
any d, Sn consistent with the training distributions. However, the PSD distribution p(Sn) covering
all future events is unavailable at the time of training. For real-time inference (especially after
experimental upgrades) we therefore propose to use a synthetic PSD distribution q(Sn) based on past
PSDs and a one-shot observation from an upgraded detector [22].

Methods.—We define the synthetic PSD distribution q(Sn) as a latent variable model

q(Sn) =

∫
q(Sn|z)qz(z)dz, (2)

where z refers to a set of latent variables that we describe below. We use domain knowledge to define
q(Sn|z) explicitly and integrate causal knowledge about the data generating process. A PSD can be
decomposed into broad-band noise b (estimated with variance σ2) and a sum of spectral features∑

i si [27], which constitute the main factors of variation between and throughout observing runs.
Thus, our model reads:

q(Sn|z) = N (b+

l∑
i=1

si, σ
2). (3)

The latent representation of the broad-band noise is given by y1, . . . , yk ∈ R+ on a logarithmically
distributed, fixed frequency grid x1, . . . , xk. b can then be reconstructed by interpolating pairs
(x1, y1), . . . , (xk, yk) using a cubic spline. Each spectral line si is represented by three parameters
f0i, Ai, Qi modeling the center, amplitude and width of a truncated Cauchy distribution, respec-
tively [27]. We segment the frequency space into l equally wide sub-intervals and model a single
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Figure 1: Left: Time development of DINGO performance since the beginning of O3 (Day 0) for
models trained with different PSD datasets. With our Synthetic PSDs, we achieve comparable
performance to the model trained with Oracle PSDs, despite only using a single O3 PSD. Right:
Chirp mass (Mc), mass ratio (q) and sky position (α) parameters for GW151012. Even when initial
DINGO results (black) deviate from LALINFERENCE-MCMC posteriors (blue), importance sampling
leads to close agreement (orange).

spectral line in each of them.2 In summary, the latent representation of a PSD is given by parameters
z = (y1, . . . , yk, f01, A1, Q1, . . . f0l, Al, Ql) ∈ Rk+3l.

We first project all PSDs from past observing runs onto their latent representation z using maximum-
likelihood estimates. We then use these latent samples to fit Gaussian kernel density estimates
(KDEs) over independent noise sources, modelling a disentangled latent distribution qz(z). The
disentanglement enables meaningful interventions on the latent space, which we leverage to adjust the
distribution for future data. Indeed, we first use a single PSD at the start of an observing run to rescale
the mean of qz(y1, . . . , yk) to account for increased detector sensitivity. And then we broaden the
latent distribution qz(z) by increasing the KDE bandwidth to account for uncertainty in the estimated
model and fluctuations in the latent features that may occur over the course of an observing run. With
this approach, we can prepare DINGO networks for an entire observing run without having access to
future PSDs.

Results.—We evaluate our approach in a real-world setting by reanalyzing the third LVK observing
run (O3). As a baseline, we train a DINGO model only with PSD data from the first four days of O3;
this Naive model would be available shortly after the start of O3. We also train a DINGO model using
a Synthetic PSD dataset from q(Sn) based on past PSDs and scaled by the first PSD of O3. Finally,
we train an Oracle model based on PSDs from all of O3 (≈ 1 year), which upper bounds the potential
performance of our noise model.

We first analyze a simulated GW signal injected into Gaussian noise drawn from a series of O3 PSDs.
As a performance metric, we compare the inferred DINGO results to reference posteriors generated
with DINGO-IS (see section 3) in terms of the mean Jensen-Shannon divergence (JSD) of the 1D
marginals. Fig. 1 shows the time development of the DINGO performance. Indeed, the accuracy of the
Naive baseline degrades with time. The Oracle model shows consistent performance throughout O3,
however, in reality such a model could only be trained at the end of O3. DINGO models trained with
the Synthetic PSD dataset almost match the Oracle performance, enabling accurate online analysis.

Finally, we analyze 37 real GW events from O3. Averaging across all events (except for an outlier
event GW190517_055101) and parameters, our Synthetic PSD dataset achieves a mean JSD of
1.4 · 10−3 nat, which is only slightly worse than with the Oracle PSDs (1.2 · 10−3 nat) and far

2This design choice restricts the number of spectral lines per segment to zero (via a vanishing amplitude
parameter) or one. More than one spectral line cannot be modeled, but we found this to be irrelevant in practice
if l is sufficiently large.
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Sample Efficiency Mean JSD Max JSD log p(d)
DINGO 2.2 7.2 (α) -
DINGO-IS 28.8% 0.5 1.4 (dL) −15831.87± 0.01
BILBY 0.14% 1.8 4.0 (dL) −15831.78± 0.10
DINGO 9.0 53.4 (Mc) -
DINGO-IS 12.5% 0.7 2.2 (α) −16412.88± 0.01
BILBY 0.16% 1.1 4.1 (α) −16412.73± 0.09

Table 1: DINGO performance for GW150914 (upper block) and GW151012 (lower). The JSD quanti-
fies the deviation to LALINFERENCE-MCMC, all values in 10−3 nat. The mean is taken across all
parameters. Results with a maximum JSD ≤ 2×10−3 nat are considered indistinguishable [32]. Here,
maxima occur for right ascension α, luminosity distance dL, and chirp mass Mc. For comparison, we
also report results from BILBY-DYNESTY.

outperforms the Naive baseline (2.7 · 10−3 nat). This shows how the generative PSD model can be
used to enhance the generalization capability of DINGO.

3 Neural importance sampling

Even accounting for shifts in detector PSDs, observed GW data can still be OOD if the noise is
non-Gaussian or the real signal is inconsistent with signal models. We here propose to combine
amortized neural posterior estimation (NPE) [28]—the method underlying DINGO—with importance
sampling. This extension (“DINGO-IS” [23]) provides interpretable diagnostics to flag failure cases
and asymptotically recovers the true posterior. Establishing this network-independent verification
and correction mechanism makes DINGO substantially more reliable for dealing with real data.

Methods.—Given a set of n samples θi ∼ q(θ|d, Sn) ≡ q(θ|d), we assign each an importance weight
wi = p(d|θi)p(θi)/q(θi|d). These can be computed since the likelihood and the DINGO proposal are
both tractable. If DINGO samples matched the true posterior perfectly, then wi = constant. More
generally, the effective sample size is neff = (

∑
i wi)

2/
∑

i w
2
i and we can quantify the quality of the

proposal with the sample efficiency ϵ = neff/n. Further, the Bayesian evidence p(d) can be estimated
as p(d) = 1/n

∑
i wi. The variance of p(d) scales with 1/n allowing for very precise estimates.

Importance sampling asymptotically recovers the exact posterior if the proposal distribution is mass-
covering, i.e., supp(p(d|θ)p(θ)) ⊆ supp(q(θ|d)). This is ensured by DINGO (and NPE in general)
through minimizing the forward KL-divergence DKL(p(θ|d)||q(θ|d)) during training, which diverges
unless q(θ|d) indeed covers the entire posterior probability space. This property is not guaranteed by
classical stochastic samplers or by other machine learning methods optimizing different objectives
(e.g., variational inference [24, 29]), so NPE is particularly well suited for importance sampling.

Although importance sampling requires likelihood evaluations at inference time, a high sample
efficiency (due to a high-quality DINGO proposal) and parallelizability make it much faster than
other likelihood-based methods. The combination of NPE and importance sampling is an amortized
extension of neural importance sampling [30]. We anticipate this to be a useful approach beyond GW
science to verify inference results of deep learning methods.

Results.—We first validate DINGO-IS on two real GW events (GW150915 and GW151012) by
comparing against LALINFERENCE-MCMC [13], an established GW inference code. In particular,
for GW151012, we find slight disagreement between DINGO and LALINFERENCE (Fig. 1 and
Tab. 1). Compared to [15], we use the more complicated waveform model IMRPhenomXPHM [31]
and a larger prior, so small DINGO inaccuracies are not surprising. The importance sampled DINGO
result, however, is in excellent agreement with LALINFERENCE. For the log evidences, we find
general agreement between the DINGO and BILBY-DYNESTY [14, 32, 33] estimates.

We also conduct a large scale study using two waveform models (IMRPhenomXPHM [31] and
SEOBNRv4PHM [34]) analyzing 42 events from O3. Running stochastic samplers with SEOB-
NRv4PHM requires several months of computation per event, so a study of this scale is only feasible
due to the superior speed of DINGO (≈ 20 seconds per event) and DINGO-IS (≈ 10 h per event
for SEOBNRv4PHM; < 1 h for IMRPhenomXPHM). Across all events, we find a median sample
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efficiency of ϵ = 10.9% for IMRPhenomXPHM and ϵ = 4.4% for SEOBNRv4PHM. This is two
orders of magnitudes larger than the sample efficiencies achieved by stochastic samplers, which are
on the order of 0.1% (see Tab. 1). For most events, we find good agreement between DINGO and
DINGO-IS, indicating high-quality inference results. Moreover, many events where DINGO performs
poorly are known OOD events: nine events are known to suffer data quality issues (specifically, glitch
artifacts), and for most of these, DINGO-IS has very low ϵ. Indeed, deep learning methods are known
to perform poorly when the data does not match the training distribution. A low sample efficiency
thus arises because the deep-learning extrapolation away from the training distribution differs from
the posterior as defined by the specified prior times likelihood in this region. We rely on this dis-
crepancy to identify potential OOD data. Likewise, adversarial attacks [35, 36] are also flagged with
extremely low sample efficiency (ϵ ≈ 0.01%) [23]. This showcases the use of importance sampling
in conjunction with deep learning methods to flag potential failure cases such as OOD data.

Experimental details.—Here and in section 2 we use the setup from [15]. DINGO models are trained
for ≈ 1 week on an A100 GPU and 32 CPUs. For DINGO-IS, we use 64 CPUs for the likelihood
evaluations. We use PyTorch [37], nflows [38] and the Adam optimizer [39], which are all freely
available under MIT or BSD license.

4 Conclusion

In this work, we proposed two approaches to deal with OOD data for flow-based GW parameter
estimation, making DINGO into a more reliable and versatile parameter estimation tool. First, we
introduced a probabilistic framework to model variations of the detector noise PSDs. We empirically
demonstrated that this greatly enhances the generalization capabilities of DINGO to drifting detector
noise distributions—enabling real-time analysis with a network trained at the beginning of an
observing run. Second, we augmented DINGO with importance sampling (DINGO-IS). This provides
useful diagnostics for detecting OOD data, and at the same time corrects potentially inaccurate
inference results. DINGO-IS has a substantially larger sample efficiency than stochastic samplers
and is fully parallelizable, resulting in great speed advantages. It also provides Bayesian evidence
estimates with ten times greater precision, enabling detailed model comparison. Going forward, we
expect these techniques to become key components for the integration of DINGO into production GW
parameter estimation pipelines.

Broader impact statement

Our methods are primarily targeted at scientific applications, and we do not foresee direct applications
which are ethically problematic. In the context of GW analysis, we hope this study helps to establish
efficient deep learning methods in production pipelines. This could reduce the required amount of
compute compared to standard inference methods, in particular when the rate of detections increases
with more sensitive detectors in the future.
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