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Abstract

Data generation based on Machine Learning has become a major research topic in
particle physics. This is due to the current Monte Carlo simulation approach being
computationally challenging for future colliders, which will have a significantly
higher luminosity. The generation of collider data is similar to point cloud gener-
ation, but arguably more difficult as there are complex correlations between the
points which need to be modelled correctly. A refinement model consisting of nor-
malising flows and transformer encoders is presented. The normalising flow output
is corrected by a transformer encoder, which is adversarially trained against an-
other transformer encoder discriminator/critic. The model reaches state-of-the-art
performance while yielding a stable training.

1 Introduction

High Energy Physics (HEP) has benefited from the advances in Machine Learning (ML) since
the analysis of HEP data is a high-dimensional multivariate problem. There have been multiple
applications of ML to HEP [1], although most of them were in the supervised approach to ML. In
HEP, detailed simulations of the physical processes, which almost perfectly describe the details of the
experimental measurement, are commonly available. These Monte Carlo simulations (MC) provide
labeled data and are needed in large numbers to cover the extreme areas of the physical phase space.
The simulations for the CMS detector at the Large Hadron Collider, for example, require about
50% [2] of the current CMS computing budget. An even larger number of simulations will be needed
for the coming high-luminosity phase of the LHC [3]. Therefore, generative modelling with Deep
Learning (DL) has sparked great interest in the HEP community.

In this study, the generation of jets is investigated using Normalising Flows (NFs) [4; 5; 6; 7] and
an adversarially trained refinement setup consisting of two transformer [8; 9] encoder networks.
The Jets in the dataset are described as point clouds in momentum space {(η(i), ϕ(i), p

(i)
T )i≤30},

which motivates the use of transformers as attention is permutation invariant. One of the transformer
encoders acts as a refinement model to enhance the NF output. The use of NFs is motivated by their
stable convergence thanks to Maximum Likelihood training, however NFs often struggle to model all
correlations present in the training data correctly and are not particularly well suited for point clouds.
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The use of the refinement network enhances the performance in the modeling of the correlations
significantly.

This extended abstract first gives an overview over the models used, then the different training
paradigms are briefly discussed. Finally, the results for different models are presented and compared.

2 Dataset

In this first study, the JetNet [10] top quark dataset [11] is used. We restrict ourselves to top quark jets
due to their more complex sub-structure. The dataset contains ∼ 180, 000 samples and and a 70/30
train/test split is applied. The data consists of top quark jets with an energy of about 1 TeV, with each
jet containing up to 30 particles. These jet constituents are considered to be massless and can therefore
be described by their 3-momenta or equivalently by transverse momentum pT , pseudorapidity η,
and azimuth angle ϕ. In the JetNet dataset, these variables are given relative to the jet momentum:
ηreli := ηparticlei − ηjet, ϕrel

i := (ϕparticle
i −ϕjet) mod 2π, and prelT,i := pparticleT.i /pjetT , where i runs

over the particles in a jet.

The invariant mass mjet of a jet is an essential high-level feature containing important physics
information. It is a global variable that depends on the correlations between the single jet constituents
and provides therefore an important metric for the performance of the generative model. For the
relative quantities above, we can define the scaled jet mass as (mrel)2 = (

∑
i E

rel
i )2−(

∑
i p⃗

rel
i )2 =

m2
jet/p

2
T,jet.

An additional set of metrics is constructed in [10] by using the Energy Flow Polynomials (EFP) [12],
which form a complete set of jet substructure observables.

The JetNet paper additionally proposes a Message-Passing Generative Adversarial Network (MP-
GAN) that outperforms other state-of-the-art models at the time of publication and to which we
compare our results.

3 Generative Modelling

Modeling an unknown complex probability function only from a set of data points is challenging.
In addition, it is often not straightforward to assess the quality of generated data. New learning
paradigms are needed to be able to train such a model. GANs, as one of the most popular approaches,
employ a setup of two networks, a generator and a discriminator that tries to distinguish generated
and real data. Their training is notoriously difficult. A more stable approach to generative modelling
are NFs, allowing Maximum Likelihood training, which is typically both fast and reproducible.

3.1 Normalising Flow Models

In NFs, the objective is to transform the training data distribution to a Normal distribution by mapping
the training data with a series of invertible functions. This setup then allows for Maximum Likelihood
optimization of the parameters of the transformation. Once the NF can transform the training data to
a Normal distribution sufficiently well, new data is generated by sampling from a Normal distribution
and applying the inverted transformations. This study used the nflows [13] library for NFs.

3.1.1 Rational Quadratic Spline Coupling Layers

In NFs with coupling layers, a clever trick is used to guarantee the invertibility of the transformation:
the input dataset is split into two disjoint sets along its feature dimensions. The first set is mapped with
the identity function, whereas the second set is transformed with a usually elementwise transformation.
In the case of Rational Quadratic Splines (RQS) [14], the quotient of two monotonic quadratic splines
is used, which is by construction invertible. To increase the expressivity of the transformation, the
parameters of the RQS for the second feature set are the output of a neural network applied to the first
set. In our model, multiple of such RQS coupling layers are stacked, and after each layer a different
split for the two sets is chosen. The Neural Networks used for producing the parameters of the RQS
are fully connected feed-forward networks, using skip connections.
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Figure 1: An overview of all components used in the model. The schematic on the left describes the
NF, made up of 15 coupling layers. The middle one shows the refinement network, which is made up
of 4 transformer encoder blocks and the one on the right similarly illustrates the critic network. All
three models are used during the training, while only the first two are used during generation. The
number of layers are given for the model architecture that gives the results presented in this study.

3.2 Transformers

Transformers were originally proposed as sequence-to-sequence models for machine translation [9].
However, they have been widely adopted in various fields like computer vision and speech processing.
On an abstract level, the main ingredients of a transformer are the encoder block and the decoder
block. In this study, similarly as for most vision transformers, only an encoder block is used [15]. The
attention architecture [8] is typically permutation invariant, which is a useful feature for modelling
particles in jets. The encoder block consists of two main components, one being 1× 1 convolutions
applied token-wise (here particle-wise, since in this case a token corresponds to a particle) and
the second being multi-headed self attention. Important for our use case is that transformers can
practically take a variable number of particles as input. This is done by zero-padding particles, which
are then masked in the calculation of the attention: their respective values are set to negative infinity
in the softmax function of the attention calculation such that they do not have any influence on the
output at all.

In this study the output of the NFs is corrected with a post-processing transformer encoder network.
An adversarial setup is used to train the refinement network which provides an additive correction to
the output of the NF. A discriminator or critic is used to judge whether the corrected NF generated
jets resemble real data. This refinement setup is used instead of a setup of only a generator and
discriminator as the training of adversarial architectures and transformers is already difficult enough
without combining them.

3.2.1 Post-processing network

The post-processing network is a transformer encoder, which takes the output of the NF and reshapes
it to RN×D, where N is the maximum number particles per jet and D is the features per particle, in
the case of this study D = 3, and N = 30. It uses Layer Normalization [16] and residual connections
to connect the pre-attention features with the post-attention layer features (skip connections in fig. 1).
The normalization is applied after the addition (Add&Norm in fig. 1).

3.2.2 Discriminator/Critic Network

Depending on whether a more Vanilla GAN-like [17; 18] or a WGAN [19; 20] setup is employed,
a discriminator or critic is used. The latter is another transformer encoder that uses a BERT style
classification token [15] to assess the realness of a jet. After the classification token passes through
the second transformer encoder network, a fully-connected network is applied, which additionally
takes the invariant mass as input. The rest of the architecture is the same as for the post-processing
network. A schematic of all parts of the architecture is shown in Fig. 1.
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Figure 2: Distribution of all particles (ηrel, ϕrel, prelT ) and the invariant mass. The generated data is
compared to a hold out data set, and a ratio is shown below the plot.

3.3 Training

Different Training procedures are tested and compared, including the Vanilla GAN [17] training,
an LSGAN [18] and a WGAN training with gradient penalty [19; 20]. Optimization is done with
RMSprop [21], the learning rate was varied with a two-cycle cosine scheduling after a linear warm-up
that is commonly used with transformers. The most stable results were obtained with the LSGAN
training. The presented model was trained on a NVIDIA P100 GPU after around 11 hours of training
time. To produce results which can be compared to Ref. [10], we perform the same (70/30) train/test
split and evaluate with the functions that are provided by the JetNet library.

4 Results

The results on the top-quark dataset from Ref. [22] are shown in Table 1. The first two entries are
from the best performing models of Ref. [10], while VNF is the evaluation of the NF output and TF
is the transformer-refined results. The best performing model used 15 RQS coupling layers and 4
transformer encoder layers in the refinement network and the critic. The performance of the proposed
models is comparable or better with respect to all considered metrics. Of particular interest is the
FPND metric, where the proposed model performs considerably better. In Fig. 2 the results are
visualized by comparing the generated particles with the holdout set. The marginal distribution of all
features of all particles and the distribution of the invariant mass of the jet are shown. The model
needs ∼ 7.6µs for the generation of one jet, which is 4.6 times faster than the model in Ref. [10] on
a NVIDIA A100.

Model WM
1 (×10−3) WP

1 (×10−3) WEFP
1 (×10−5) FPND COV ↑ MMD

MP-MP [10] 0.6± 0.2 2.3± 0.3 2± 1 0.37 0.57 0.071

MP_LFC-MP [10] 0.9± 0.3 2.2± 0.7 2± 1 0.93 0.56 0.073

VNF 5.0± 0.2 2.5± 0.6 14± 2 5.61 0.56 0.072

TF 0.78± 0.09 1.3± 0.3 2± 1 0.08 0.57 0.072

Table 1: Comparison between the best performing models from Ref. [10], with different models from
this study on the top quark dataset. Scores written in bold highlight the best value.

5 Conclusion

In this study a particle cloud generation model consisting of normalising flows and transformer
encoders is proposed. The transformer encoder acts as a refinement model on the output of the
normalising flow, and is trained in an adversarial fashion using another transformer encoder as critic.
Intuitively one would not expect that NFs are well suited for point cloud generation, however they
provide a stable starting point, as adversarial setups and transformer models are notoriously difficult
to optimize. The model reaches state-of-the-art performance on the publicly available JetNet [23]
top quark dataset. It is important to note that particle clouds are similar to point clouds, possibly
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even more complex. As such it is expected that the model also would perform well on point cloud
generation tasks. For future studies it is planned to use the model on the other JetNet datasets [22]
as well as on a dataset with more particles, and to evaluate its scaleability. It is expected that inputs
with a higher dimensionality are difficult for the attention calculation as it scales with the number
particles squared. But as transformers are an active field of research, there seem to be possible ways
to overcome this [24; 25].
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