
Shining light on data

Akshat Kumar
Department of Mathematics

Clarkson University
Potsdam, NY 13699

akumar@clarkson.edu

Mohan Sarovar
Sandia National Labs
Livermore, CA 94550
mnsarov@sandia.gov

Abstract

Experimental sciences have come to depend heavily on our ability to organize,
interpret and analyze high-dimensional datasets produced from observations of a
large number of variables governed by natural processes. Natural laws, conservation
principles, and dynamical structure introduce intricate inter-dependencies among
these observed variables, which in turn yield geometric structure, with fewer
degrees of freedom, on the dataset. We show how fine-scale features of this structure
in data can be extracted from discrete approximations to quantum mechanical
processes given by data-driven graph Laplacians and localized wavepackets. This
leads to a novel, yet natural uncertainty principle for data analysis induced by
limited data. We illustrate some applications to learning with algorithms on several
model examples and real-world datasets.

Nature is complex, yet organized – this basic facet has become a cornerstone for how we analyze
and interpret vast amounts of data ranging from the biological, physical, geological, meteorological,
all the way to the astronomical. In fact, we owe to this, nearly all of the significant advances in
data analysis disciplines in the past two decades, including signals processing [8, 22] and machine
learning [3, 5, 11], where tractable models capture, interpret and reproduce complex natural data. We
can turn this observation on its head and ask: are there certain natural processes that are fundamental
to understanding the structure in complex, yet organized data?

We propose that, much like how quantum mechanics models nature at fine scales, the fine-scaled
resolution of the organization and structure of data is also best characterized using quantum mechan-
ical processes. Consider the following general scenario: an experimentalist makes a sequence of
measurements, each consisting of a value for D variables. Each measurement is thus a point in RD.
Of course, measurements coming from nature are bound by physical laws, so in fact one must imagine
that the true ambient space is some other, nonlinear structure M, residing in RD. Moreover, if the
experiment is governed by a number of parameters, then these give M its local degrees of freedom
around any given measurement. This principle is in fact often studied and known as the manifold
hypothesis (MH) [9]: measurements of arbitrarily high dimensions (residing in RD) arising from
natural processes are confined to low-dimensional manifolds (i.e., M ⊂ RD with dimM ≪ D).
Due to the MH, the experimentalist’s aim of connecting model parameters to observations through the
relationships among measurements is just the analysis of the organizational structure, or geometry of
data. In the natural sciences, such analyses are commonly performed through dimensionality reduc-
tion, classification, etc. using techniques such as principal component analysis (PCA), t-distributed
stochastic neighbor embedding (t-SNE), or variants of Laplacian eigenmaps, that indirectly probe the
geometry of data, e.g., [7, 19, 14]. In addition, it has recently been appreciated that understanding and
exploiting the structure of data, and sometimes reorganizing/reparameterizing it, has advantages in
learning frameworks such as convolutional neural networks, e.g., [24, 4]. While the state-of-the-art in
learning the structure and organization of data is founded on principles of Markovian dynamics [2, 6]
– primarily because of their local nature that forms an accessible link between random walks and
Markov processes – in practice, these are suitable only for accessing coarse features of the data due to
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the slowly varying nature of the steady-states that form the basis of these techniques. We propose that
to perform a fine-scaled data analysis, it is advantageous to shift the paradigm to quantum mechanics,
which provides a natural way to formulate dynamics on the data that respects limits to resolution of
its geometric structure set by data sampling, through the introduction of phase-space uncertainty.

1: Inputs: XN = {v1, ..., vN}, v∗, ϵ > 0, α ≥ 1, t > 0

2: Output: Propagated state [ψζ
h](t)

3: procedure PROPAGATE
4: Compute [Tϵ]i,j = k(||vi−vj ||2/ϵ)

5: Compute diagonal matrix [Dϵ]i,i =
∑N

j=1[Tϵ]i,j

6: Compute ∆ϵ,N =
4(IN−D−1

ϵ Tϵ)

ϵ

7: U t
ϵ,N ← exp(−it

√
∆ϵ,N )

8: Set h = ϵ
1

(2+α)

9: Set p0 = vj−v∗ for vj closest to point v∗⇒ ζ = (v∗, p0/||p0||)
10: while 1 ≤ ℓ ≤ N do
11: [ψζ

h]ℓ ← e−
||vℓ−v∗||2/2he

i
h
(vℓ−v∗)Tp0/||p0||

12: return [ψζ
h](t) = U t

ϵ,N [ψζ
h]

Algorithm 1: Pseudocode for algorithm
that performs data-driven propagation of coher-
ent states on a data graph. The inputs are the
dataset XN ⊂ RD , an initial data point to
propagate from, v∗, parameters ϵ > 0, α ≥ 1,
and a time to propagate for, t > 0. Lines
4-7 construct a data-driven quantum propaga-
tor, Ut

ϵ,N using a graph Laplacian ∆ϵ,N com-
puted from the data. k(·) (line 4) is an ex-
ponentially decaying function of the argument
and IN (line 6) is the N × N identify ma-
trix. Lines 10-11 form the N × 1 vector that
approximates a coherent state at phase space
point ζ := (v∗, p0/||p0||). A more detailed
description of this algorithm, and extensions of
it, are presented in [17, 16].

We realize this proposal through the simulation of quantum dynamics on data as sketched in Algorithm
1. The fundamental relationship connecting this dynamics to the structure of data is given by a discrete
quantum-classical correspondence principle (QCC), which is established in Ref. [15] and summarized
in [17, 16] and applies when the MH holds for the data in RD, confined to M a smooth, compact,
boundaryless submanifold. This relationship is supported by the traditional form of the QCC,
which physically in our geometric setting connects the propagation of wavefunctions of photons
(quantized excitations) on curved space (M) with geodesic propagation of light rays [12]. Such a
propagation is illustrated in green in Figure 2. More formally, it is a well-known result in microlocal
analysis [23, 25] that the trajectory of an impulse δx∗ at x∗ ∈ M with respect to the propagation
U t[δx∗ ] := e−it

√
∆[δx∗ ], where ∆ is the Laplace-Beltrami operator of M, has singular support

along geodesics in all directions at distance |t| < T from x∗, for a bounded time T . This is the
continuum QCC in action: it connects the quantum mechanical propagation U t[δx∗ ] generated by the
quantization

√
∆ of the classical Hamiltonian (purely kinetic energy), to the geodesic flow, by moving

the energy concentration of the singular state δx∗ to time t along the classical flow in directions of
the state’s asymptotically large momenta (i.e., the frequencies of its wavefunction) [23].
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Figure 2: (a) Data isN = 2500 regularly spaced samples from the unit circle: xj = (cos θj , sin θj) for θj ∈ [0, 2π). (b) We observe
the squared magnitude of: (green) an undirected optical ray from x∗ = π at time t = π

2 , i.e., |Ut[δπ ]|2, and (blue) the corresponding
data-driven quantum propagation, i.e., |Ut

ϵ,N [δπ ]|2. While the former is concentrated at x− = π − t = −π/2, x+ = π + t = 3π/2,
which are points that minimize |dg(x∗, x) − t| (dg is geodesic distance), the latter state bears no resemblance to geodesic propagation, with
significant attenuation over the green signal, and an undiminished peak at the source, x∗. We also show (dashed red) the data-driven propagation
of a coherent state centered at x∗ with uncertainty parameter h, i.e., |Ut

ϵ,N [ψζ
h]|2, with ζ = (π, 1). This state is approximately centered at

the point x+, and in fact, its expected position, ⟨x⟩, satisfies |⟨x⟩ − x+| ≤ h. Note that all curves are normalized to have the same maximum
value in order to plot them on the same scale. (c) Depiction of coherent state propagation in phase space, T∗M. The zoom-in schematically
shows

√
ϵ and

√
h, the data-determined scale and uncertainty parameters, respectively.

Coming back to quantum dynamics on the data, we couple the above continuum QCC with the
now well-known result that, assuming the MH, we can approximate from N measurement samples
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XN := {v1, . . . , vN} ⊂ RD the Laplace-Beltrami operator of their underlying manifold through
the graph Laplacian ∆ϵ,N of a

√
ϵ-nearest-neighbour (

√
ϵ-n.n.) graph on XN with high probability

(w.h.p.) [2, 13, 6]. Our recent work shows that a data-driven approximation to the quantum mechanical
propagator U t is given w.h.p., by the N ×N matrix U tϵ,N := e−it

√
∆ϵ,N . Given this construction, it

is tempting to reproduce the geodesic propagation of light rays given through U t[δx∗ ] with U tϵ,N [δx∗ ].
However, as shown in the blue curve in Figure 2(b), this data-driven propagation bears no resemblance
to the continuum signal U t[δx∗ ] (green curve). This is because ∆ϵ,N is defined through a Markov
process discretized to

√
ϵ-balls on the manifold and based on the uncertainty principle, our recent

work shows that this Markov process acts like a low-pass filter by attenuating spatial frequencies with
magnitude ≳ 1/

√
ϵ. Therefore, ∆ϵ,N approximates a scalar operator at bandwidth ≳ 1/

√
ϵ and by

virtue of being its spectral function, so does U tϵ,N . This explains the concentration of the blue curve
in Figure 2(b) about x∗ and predicts that this behaviour will persist even in the limit N → ∞ while
ϵ > 0 remains bounded away from zero.

Understanding this issue is the fulcrum of our discrete QCC, which recovers light rays from data-
driven simulation of quantum dynamics. As we’ve seen, the primary obstruction to approximating
the continuum QCC with U tϵ,N [δx∗ ] is the over-concentration of the initial state δx∗ , which gives
frequency content above the data-determined threshold ∼ 1/

√
ϵ. To control this, we introduce a state

ψh ∈ C∞(M× (0, 1]h) surrogate to δx∗ , whose bandwidth we can control to scale as ∼ 1/h and
whose continuum propagation U t[ψh] follows the light ray emanating from x∗ until time t, to within
a
√
h-ball throughout the propagation. This is satisfied by coherent states, which in the continuum

have position-space representation: ψζh(v) := e−
1
2h ||v−x∗||2e−

i
h ⟨x∗−v,p⟩ with position x∗ ∈ M and

momentum p ∈ T ∗
x∗M. Rooted in the above arguments, it is established in Ref. [15] and further

discussed in [17, 16] that in order for the data-driven propagation U tϵ,N [ψζh] to approximate U t[ψζh]
(w.h.p.) and therefore, to follow the light rays on data, the bandwidth 1/h must be kept ≪ 1/

√
ϵ.

Thus, the uncertainty parameter 0 < h ≤ 1 governing the quantum mechanical properties of coherent
states gives us the desired control to establish our discrete QCC.

In Figure 2(b) the dashed red line shows the result of propagating a coherent state using a data-
driven propagator for the circle example. By incorporating the intrinsic uncertainty induced by finite
sampling into the formulation of quantum dynamics, we recover accurate propagation. In Figure 2(c)
we also depict coherent state propagation in phase space for this example, and graphically show the
relationship between ϵ and h.

In [15, 17, 16], convergence results have been derived to establish the following: given N data
samples, XN , from a smooth density on M, the data-driven finite-dimensional matrix propagation
[ψζh](t) := U tϵ,N [ψζh] returned by Algorithm 1, with h ∝ ϵ

1
2+α for α ≥ 1 agrees with U t[ψζh] up

to uniform error O(h) w.h.p., provided h ≳ N− 1
γ for γ > 0 a constant depending only on α and

dimM. Thus, [ψζh](t) traverses within an O(
√
h) radius of the geodesic beam emanating from v∗ in

the direction p to time t. Moreover, the point x̄t := ||ψζh(t)||−2
∑N
j=1( vj,1 ··· vj,D )|[ψζh](t)|2, which

is the expected position of the propagated state, is w.h.p. within geodesic distance O(h) to the point
x∗t , that is geodesic distance t from the initial position v∗ in the direction p. While this expected
value of the position coordinate, x̄t, is the best estimate of position along the geodesic path, due to
the localization of the propagated state the maximum of the wavepacket distribution, we show that
x̂t := argmax |[ψζh](t)|2 is w.h.p. within geodesic distance O(

√
h) from x∗t .

The data-driven quantum dynamics formulated above enables estimation of intrinsic distances between
points in a dataset: if x̄t(j; pj) ∈ XN denotes the data point closest to x̄t (or x̂t) computed as above
with respect to an initial state ψζh localized at ζ := (vj , pj), then t gives the propagation time of a
coherent state following approximately a ray emanating in direction pj from vj . When the data is
sampled from a smooth density on a smooth, compact, boundaryless manifold, we have established
that t is w.h.p., within O(h) of the geodesic distance. In fact, by using local PCA to define ψζh and
hence, pj , it is shown in [17, 16] that the dataset XN can be charted with geodesic polar coordinates
(GPC), or equivalently, normal coordinates. We pause to emphasize that the procedure we have
described gives access to geodesics and GPC on a manifold, which are inherently described by
non-linear dynamical equations, through linear, matrix computations. Computing such quantities,
even when much more is known about the manifold, is generally computationally difficult since
typical approximation methods are insufficient: polyhedral approximations are not a faithful model
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Figure 3: Analysis of adherence to social distancing measures during the COVID-19 pandemic using the Social Distancing Metric dataset
from SafeGraph Inc. [1]. This dataset is a collection of geolocation information from mobile devices in the United States, aggregated at the
census block group (CBG) level and recorded daily for a period of over a year. As previously studied in Ref. [18], we compute the stay-at-home
(SAH) fraction as a simple metric of adherence to social distancing from this data: for a given date, this is a measure of how curtailed mobility
was within a CBG. To compare with Ref. [18] we consider data for the state of Georgia (GA) and limit it to the 117-day time period from
February 23, 2020 to June 19, 2020, which provides a snapshot of mobility patterns during the first three months of the pandemic. After
removing 17 CBGs with poor quality data, there are 5509 CBGs within the state. Therefore, our datasetXN hasN = 5509 samples, each of
dimension 117. Top (a,b,c): Embedding of XN and clustering when the expected position x̄t is used to define points a geodesic distance t
away. Bottom (d,e,f): Embedding and clustering when the maximum x̂t is used to define points a geodesic distance t away. (a) and (d) show
3-dimensional embeddings of XN and clustering of the resulting points into five clusters using k-means clustering. (b) and (e) show the average
SAH fraction time series for each cluster. In (b) we see a clear separation of clusters by their SAH behavior, and in (e) we have identified an
anomalous SAH pattern (in purple) in one of the clusters. (c) and (f) color code the CBGs in GA according to the cluster they belong to. (c)
shows a clear rural-urban divide in degree of social distancing behavior, and (f) is a magnification of the Atlanta metropolitan region, because
many of the outlier CBGs identified are located in this area. We refer to [17, 16] for a detailed analysis, including parameter values and choice
heuristics.

of manifolds with curvature restrictions [20] and even forward marching type approximations are
known to be prone to failures [21]. Furthermore, our result establishes the first general convergence
result for geodesics and GPC from data.

More broadly, the assignment of a data point x̄t(j, pj) = vk to a given data point vj is, in itself,
independent of further structural assumptions on the dataset. Even when the dataXN is not guaranteed
to be sampled from a manifold, this defines a distance relationship between two points based on
the quantum walk U tϵ,N [ψζh]. Based on this distance relationship we can build an N ×N adjacency
matrix, G, for a graph XN on XN , with elements Gj,k = Gk,j = t. Repeating this process for
a collection of initial points vj and time-steps, t1, . . . , tm populates this adjacency matrix, which
captures a notion of distance between the data points in XN given by the quantum propagation
times of coherent states. We can perform emebeddings of XN to achieve tasks such as recovering
reduced-dimensional coordinates, clustering, classification, etc. We find that even the most classical
embedding of XN in few dimensions, such as the Fruchterman-Reingold (FR) method of springs and
electrostatic forces [10], recovers salient features of complex datasets. For example, Figure 3 shows
examples of FR embedding into 3 dimensions followed by k-means clustering of a 117-dimensional
dataset related to population mobility during the initial months of the COVID-19 pandemic. The
embedding enabled by our discrete QCC and subsequent clustering is able to meaningfully separate
geographic regions with differing levels of mobility as well as identify outlier patterns. On the same
dataset, a state-of-the-art Markov-based approach was deployed in Ref.[18] and relied on analysis in
14 dimensions to identify poorer quality clusters (see Fig. 2 of Ref. [18]), and was also unable to
identify the outlier patterns in mobility.

We have argued that, similar to the Fourier transform being fundamental for signal analysis, quantum
propagation and sensing are fundamental for structure analysis in sampled data. The structure is
carried by the dynamics of rays emitted on the dataset, which are signals generated by the quantum
propagation U tϵ,N [δx∗ ] that can be resolved with the aid of coherent states defined on the dataset.
When the data satisfies the MH with a compact, smooth, boundaryless manifold, these signals reveal
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the underlying geodesic flow that governs the data’s organizational patterns. Our experiments indicate
that these signals efficiently reveal underlying patterns and anomalies in even sparse datasets.
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Broad impact

In this work we develop a new framework for understanding structure within large datasets. These
results will be useful for analyzing and extracting meaning from a broad range of datasets, with
applications ranging from the analysis of statistical and experimental data to image analysis and
to analysis of sensor and computer simulation data. The unique capability we have developed, to
efficiently identify geodesic distances between data points, could be useful for performing heretofore
infeasible analyses. As an example, we have shown in Figure 3 the capability of our methods to
detect anomalous behavioral patterns in mobility during the COVID-19 pandemic, which surpasses
the comparative state-of-the-art in literature; in the accompanying recent works, we have given
further examples of pattern recognition on a variety of real-world datasets. As such, this could have
tremendous societal benefit, since efficient analysis of large datasets is a ubiquitous task in almost
every field of study. Negative societal impacts are also possible if the increased capabilities in data
analysis are utilized for purposes such as surveillance. As with any fundamental data analysis method,
the societal impact is eventually dictated by the way in which the method is applied.
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