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Abstract

In particle physics calculations are centered around Feynman integrals, which
are commonly expressed using polylogarithmic functions such as the logarithm
or the dilogarithm. Although the resulting expressions usually simplify with an
astute application of polylogarithmic identities, it is often difficult to know which
identities to apply and in what order. We explore the extent to which machine
learning methods are able to help with this creative step. We implement two
simplification strategies, one based on an intuitive application of reinforcement
learning and one showcasing the potential of language models such as transformers.
We demonstrate that the transformer approach is more flexible and holds promise
for practical use in symbolic manipulation tasks relevant to mathematical physics.

1 Introduction

In high energy physics Feynman integrals are of primordial interest, being necessary to describe the
scattering of elementary particles. In many relevant calculations polylogarithmic functions [1, 2, 3, 4,
5, 6] are ubiquitous, with functions such as ln(x) and Li2(x) routinely coming out of the integration
[7, 8]. Even if the class of functions to be considered is limited to classical polylogarithms Lin(x),
simplifying the resulting expression can be challenging [9, 10, 11], as equations can span multiple
pages and require judicious applications of mathematical identities. As a practical example, we can
consider the following expression which arises in the computation of the Compton scattering total
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cross section at next-to-leading order (NLO) in quantum electrodynamics [12]:

I(r) =
2π2

9
− ln2 r

2
+ (− iπ

3
+ ln r) ln(r − z1) + ln(rz1) ln(r − z2) (1)

− Li2(1− z1) + Li2(1− rz1)− Li2(1− z2) + Li2(1− rz2) (2)

where z1 = 1+i
√
3

2 and z2 = 1−i
√
3

2 are cube-roots of unity. Although this expression is correct, it
can be simplified further to

I(r) = −1

3
Li2(−r3) + Li2(−r)− 1

2
ln2 r +

π2

18
(3)

through various dilogarithm identities [13]. There is no existing software package (to our knowledge)
which can simplify such expressions automatically and one often has to rely on educated guesswork.
In this paper we will explore how machine learning methods may address this bottleneck, where we
emphasize that our approach will operate on purely symbolic data. For this initial study, we consider
classical polylogarithms and functions of a single variable where the problem is already challenging.
We first consider Reinforcement Learning (RL) to explicitly simplify expressions, prompted by
the interesting applications of RL in symbolic domains, notably theorem proving [14, 15, 16, 17],
symbolic regression [18] or the untangling of knots [19, 20]. We will then adapt a tool from Natural
Language Processing, transformer networks [21], for our simplification task following its successes
in symbolic integration [22] and solving simple mathematical problems [23, 24].

2 Reinforcement Learning for explicit simplification

Reinforcement Learning setup We first consider a toy problem where our state space corresponds
to the set of linear combinations of dilogarithms whose arguments are rational functions over
the integers. We restrict ourselves to dilogarithmic expressions which can be reduced using the
actions of inversion Li2(x) → −Li2(1/x), reflection Li2(x) → −Li2(1 − x) and duplication
Li2(x) → −Li2(−x) + Li2(x2)/2. Since simplifying single logarithms and constants is not difficult,
we drop these terms from our calculus. Symbolic expressions are parsed in prefix notation, following
the tree-like structure of mathematical formulas. For instance the mathematical expression Li2(x2)
is parsed as [’Li’, ‘2’, ’pow’, ’x’, ’2’]. Our RL agent will have the option to act on the first
dilogarithm term in an expression using either inversion, reflection or duplication. We also allow
for a cyclic permutation of the terms as a fourth action, ensuring that every term is reachable.
The goal is to produce the shortest expression possible, minimising the number of dilogarithms
N dilogs. At a given time t we will reward our agent with rt = +1 if a simplification occurs, so if
N dilogs

t < N dilogs
t′ ∀ t′ < t. We also consider adding a penalty of ∆rt = −0.25 if the same action

(not applicable to permutations) is taken consecutively, without leading to any simplification.

Network architecture All tokens are one-hot encoded and each expression is converted into
a graph, based on its tree like structure, before being passed through a graph neural network
implemented in [25]. We consider the GraphSAGE message passing architecture [26] along with a
mean aggregation scheme. Our network uses 2 message passing layers and an embedding dimension
of 64. We also experimented with fixed size embeddings for each expression, allowing up to 512
tokens and zero-padding the entries if required. On average this performed slightly worse than the
complete graph neural network architecture, which we will retain. As our agent we use the TRPO [27]
implementation from [28], with the policy and value networks sharing one layer of size 256, followed
by three independent layers of size 128,128 and 64.

Dataset and experiments We let our agents train for 3× 106 time steps on a single GPU, with the
default hyperparameters of [28]. We notably tune the discount factor γ = 0.9 and the generalized
advantage estimate (GAE [29]) λ = 0.9. For each episode we sample a new expression from a
training set with 13,500 examples. Those expressions are generated such that they can all be simplified
down to 0 (no dilogarithms) with the help of inversion, reflection or duplication in less than 8 steps.
During training an episode is terminated if the simplified form is found or if 50 steps have been
taken by the agent. In order to evaluate our agents we let them run on a distinct testing set of 1,500
expressions. The evaluation makes use of a beam search of size N . At any given step we consider the
top two actions proposed by the agent and keep the N best trajectories in memory. Determining the
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Figure 1: Performance of the best RL agents on the test set of 1,500 dilogarithmic expressions that
simplify to 0 (no dilogarithms), as a function of the complexity of the input, given by the number of
identities (scrambles) applied to generate the expression. The right panel shows the average number
of identities tried (unscrambling steps) by the different agents when solving the examples.

best trajectories is done by making use of the trained value network V and selecting the trajectories
that maximize R̃t+1 =

∑t−1
k=0 γ

krk + γtrt + V (st+1). To benchmark the overall performance we
compare to an agent using random actions and to a handcrafted classical algorithm that functions as a
modified best first search. This classical algorithm applies all possible actions (on every single term
in an expression) and retains the one leading to an immediate simplification. If no simplification is
found, a reflection action is performed by default on the first term in order to continue the search.
We show on the Fig. 1 the ability of our agents to simplify dilogarithmic expressions along with the
number of exploratory steps required.

Challenges and limitations of RL Our trained agents have learned to simplify linear combinations
of dilogarithms, reaching an average beam search performance of 89% compared to the 13% of the
random agent. However the environment considered was fairly straightforward since the expressions
retained were the ones reducing to 0. Training in the general case, where the goal state is not known,
is expected to be much harder. Nonetheless RL seems to offer some advantages over a simple classical
algorithm. For instance the trained agents reduce the number of evaluations required to find the
simplified expression, in a way which does not scale with the total number of available identities and
dilogarithm terms. Additional improvements can be considered, namely using the policy and value
networks to further guide the search problem (with the A∗ search algorithm [30] or a Monte Carlo
Tree Search [31]), or implementing a warm start with imitation learning [32].

3 Transformer networks for direct simplification

Transformers for simplification An advantage of the RL approach is its reproducibility: the list
of actions taken to arrive at the final answer is known and can be studied and checked. However,
demanding reproducibility also imposes a limitation on the way the data is learned and understood.
RL algorithms such as ours need to learn an initial embedding layer, require a finite and well defined
action space and can suffer from sample inefficiency as commonly seen in other applications of
policy gradient methods [33]. If we are only interested in the final simplified form, not the explicit
set of identities used to get there, seq2seq models are well adapted, with the prime example being
the Transformer Network [21]. Our approach is based on the work of [22] (under CC BY-NC 4.0
license), where transformer networks were used to perform a symbolic integration task, showing
competitive performance compared to classical algorithms.

To use the transformer we have to convert our task of simplifying equations into a translation one.
We explore two different approaches. We first inquire whether it is possible to train a transformer
to simplify linear combinations of dilogarithms directly, as in the problem RL was applied to in
Section 2. In our second approach we then use the symbol (see [9, 34, 35, 36] for a mathematical
review) to represent a polylogarithmic expression and deploy a transformer network to look for the
simplest expression that is associated with a given symbol.
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Figure 2: Performance of the transformer in simplifying expressions of dilogarithms as a function of
two different measures of complexity. The left panel shows how performance depends on the number
of identities (scrambles) applied to generate the expression. The right panel shows performance as a
function of the number of terms in the simplified expressions.

Functional simplification For our simplification task we generate a training set of 2.5M simple
dilogarithm expressions (with 3 distinct terms or less). We produce associated complicated but
equivalent forms by shuffling the simple expressions using inversion, reflection and duplication, using
up to 10 identities. We then train a transformer network to generate the simplified form corresponding
to a shuffled expression used as input, parsed in a text like prefix notation. We use 3 encoder and
decoder layers, an embedding dimension of 512 and train for 8 hours on a single A100 GPU. We then
evaluate the performance of our network on a test set of 5,000 expressions and report it on the Fig. 2.
The network predicts a single answer which may be exactly the same as the simplified answer in the
test set (orange points) or equivalent up to application of inversion and reflection identities which do
not increase the complexity, and is therefore still correct (blue points). Predicting the answer gets
harder as the length of the expected sequence increases but our model still performs remarkably well,
considering that no external calculator is used and that expressions are predicted in symbolic form.
Overall we also noticed that performance was robust with respect to changes in the transformer’s
hyperparameters, offering an advantage over the more fine-tuned RL setup.

Integrating the symbol Another route for simplifying polylogarithms is one that makes use of the
symbol S , defined in [9]. The symbol extracts the logarithmic differentials from an iterated integral
expression and can be easily manipulated with the same product rule satisfied by the logarithm.
Evaluating the symbol of an expression and simplifying it is in general more straightforward than
dealing with the complete functional form. In practice however recovering the simplest function that
corresponds to a given symbol is a hard task, for which no publicly available algorithm exists. For
instance while the symbol of the dilogarithm is easy to identify S[Li2(x)] = −(1−x)⊗x, other sym-
bols might correspond to more complicated forms like S[Li2(x3)−3Li2(x)] = −3

(
x2 + x+ 1

)
⊗x.

This problem of integrating the symbol can also be tackled using a transformer network similar to the
one described in the last section. Our dataset is composed of about 3.8M polylogarithm expressions
Lin(x) where the transcendental weight is constrained to 2 ≤ n ≤ 4. For each expression we
compute its associated symbol in Mathematica with PolyLogTools [37], using it as the input for
the transformer network, from which it has to reconstruct the associated function. We evaluate the
performance of our trained network on a test set of 10,000 expressions and compare it to a classical
algorithm, which we developed for Li2 expressions1. For higher transcendental weights classical
algorithms are not available, nor straightforward to implement. Our results are summarized in the
Table. 1 where we can notice that the overall performance remains comparable irrespective of the
transcendental weight. In contrast, integrating the symbol by hand is a task that generically becomes
considerably harder as the weight increases. Typical failure modes of the network are associated with
either long input symbols or complex expressions in the output. This is expected since fewer relevant

1Our classical algorithm is developed in Mathematica using standard pattern matching tools. All other
models and datasets are available under https://github.com/aureliendersy/ML_Polylogarithms.
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Table 1: Overall solving rate on the test set for the symbol integration task for multiple polylogarithms
of different weights. A beam size of N refers to testing the N best guesses of the transformer network.

Beam Size 1 Beam Size 5

Weight 2 Transformer 82% 91%
Classical Algorithm 59% 59%

Weight 3 Transformer 78% 88%

Weight 4 Transformer 80% 89%

examples would have been encountered during training. Nonetheless the transformer architecture is
scalable and we expect that generating more substantial datasets would address that concern.

4 Conclusion

In this paper we have considered whether machine leaning can help with a mathematical problem
essential to computations in quantum field theory: polylogarithmic function simplification. We
demonstrated that on a simple toy problem RL was a natural machine learning framework to imple-
ment, able to efficiently simplify dilogarithmic expressions. However, our training was limited to
expressions that could fully simplify to zero using a limited set of identities, such that scaling up
would prove challenging. We showed that transformer networks provided a suitable and preferred
alternative, capable of guessing the simplified polylogarithmic expression starting from either a
complex functional expression, or from a symbol entry. In both cases no general classical algorithm
is known and our results suggest that it is conceivable to engineer a suitable machine learning tool for
practical usage, for instance by generalizing to arbitrary multivariate functions. Seeing as machine
learning has already revolutionized data-driven particle physics (see e.g. [38]), our expectation is that
symbolic machine learning methods hold great potential for the future of high energy physics, our
work being a first step in that direction.
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Broader Impact

This paper highlights the use of language models as a tool for the simplification of polylogarithmic
functions. As a toy problem it highlights the broader impact that natural language processing could
have in the high energy community, acting as a tool for dealing with symbolic manipulations. As
opposed to a traditional text generation task, our final output is of mathematical nature and its validity
can and should be rigorously assessed. Like any language model the behaviour is highly dependant
on the type of data encountered during training. For our purposes we only considered mathematical
data which we believe not to pose any ethical challenge.
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(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes] See the footnote
in the last paragraph of Section 3. We include a link to our online repository hosting
the code and data. The classical algorithm used for weight 2 symbols in Mathematica
is proprietary.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See the Dataset and experiment paragraph of Section 2. See the
Functional simplification paragraph of Section 3.

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Variations in results did not impact the overall discussion.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See the Dataset and experiment
paragraph of Section 2. See the Functional simplification paragraph of Section 3.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] See Ref [22].
(b) Did you mention the license of the assets? [Yes] See the first paragraph of Section 3

for the code license.
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

See the footnote in the last paragraph of Section 3. We include links to all of our
generated datasets.

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]
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