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Abstract

Monte Carlo simulations of physical processes at particle colliders like the Large
Hadron Collider at CERN take up a major fraction of the computational budget.
For some simulations, a single data point takes seconds, minutes, or even hours
to compute from first principles. Since the necessary number of data points per
simulation is on the order of 109 – 1012, machine learning regressors can be used
in place of physics simulators to reduce this computational burden significantly.
However, this task requires high-precision regressors that can deliver data with
relative errors less than 1% or even 0.1% over the entire domain of the function. In
this paper, we develop optimal training strategies and tune various machine learn-
ing regressors to satisfy the high-precision requirement. We leverage symmetry
arguments from particle physics to optimize the performance of the regressors.
Inspired by ResNets, we design a Deep Neural Network with skip connections
that outperform fully connected Deep Neural Networks. We find that at lower
dimensions, boosted decision trees far outperform neural networks while at higher
dimensions neural networks perform better. Our work can significantly reduce
the training and storage burden of Monte Carlo simulations at current and future
collider experiments.

1 Introduction

Particle physics experiments like those at the Large Hadron Collider at CERN, are running at progres-
sively higher energies and are collecting more data than ever before. As a result, the experimental
precision of the measurements they perform is continuously improving. However, to infer what these
measurements mean for the interactions between the fundamental constituents of matter, they have to
be compared with and interpreted in light of, our current theoretical understanding. This is done by
performing first-principles computations for these high energy processes order by order in a power
series expansion. After the computation, the resulting function is used in Monte Carlo simulations.
The successive terms in the power series expansion, simplistically, become progressively smaller.
Schematically, this can be written as:

F (x) = f00(x) + α f01(x) + α2 {f11(x) + f02(x)}+ . . . . (1)
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where α ≪ 1 is the small expansion parameter. The term of interest to our current work is the one
enclosed by the curly braces in equation 1 which we will refer to as the second-order term, where
order refers to the power of the expansion coefficient α. The function, F (x), must be evaluated
on the order of 1010 times or so for each simulation. However, for many processes, evaluating the
second-order term, specifically, f02, is computationally space- and time-intensive and could take
several seconds to compute a single data point. Moreover, these samples cannot be reused leading to
an overall high cost of computation for the entire process under consideration.

A simple solution to speed up the computation of the functions is to build a regressor using a
representative sample generated just once from a Monte Carlo simulation and then use the regressor
for all subsequent simulations. However, to achieve the precision necessary for matching with
experimental results, the regressors need to produce very-high accuracy predictions over the entire
domain of the function. The requirements that we set for the regressors, and in particular what we
mean by high precision, are:

High precision: prediction error < 1% over more than 90% of the domain of the function
Speed : prediction time per data point of < 10−4 seconds
Lightweight : the disk size of the regressors should be a few megabytes at the most for portability

Several machine learning algorithms have been used for speeding up sample generation for Monte
Carlo simulations. Winterhalder et al. [21] proposed the use of Normalizing Flows [12] with Invertible
Neural Networks to implement importance sampling [15, 1]. Recently, neural network surrogates
have been used to aid Monte Carlo Simulations of collider processes [7]. Badger et al. [2] used
Bayesian Neural networks for regression of particle physics amplitudes with a focus on understanding
error propagation and estimation. Chen et al. [6] attempted to reach the high-precision regime with
neural networks and achieved 0.7% errors integrated over the entire input feature space. Physics-
aware neural networks were studied by Maître and Truong [14] in an attempt to handle singularities
in the regressed functions. In the domain of generative models, GANs [9, 18, 4] and VAEs [4] have
been used for sample generation [5, 16]. Recently, boosted decision trees (BDT) and has been shown
to achieve impressive accuracy for 2D data [3].

Similar applications have surfaced in other domains of physics where Monte Carlo simulations are
used. Self-learning Monte Carlo methods have been explored by Liu et al. [13]. Applications of
Boltzmann machines [11], deep neural networks [17] and autoregressive neural networks [22] have
been seen recently. Stratis et al. [20] use neural networks in Quantum Monte Carlo simulations to
learn eigenvalues of Hamiltonians and the free energy of spin configurations, an application that lies
outside the domain of particle physics. However, the primary goal of all these efforts has been to
avoid first-principles computation and, hence, reduce compute time while staying below credible
error budgets that are set in a problem-specific manner.

2 Experiments and Results

Physics informed normalization: An attempt to build regressors with the raw data from the Monte
Carlo simulations results in a failure to meet the high-precision requirements that we have set. Hence,
we have to appeal to a novel normalization method derived from the physics that governs the physical
processes. The functions of interest in particle physics processes at colliders are often very highly
peaked in one or more dimensions. This makes it quite difficult to build a regressor that will retain
the desired high precision over the entire domain of the function. This problem cannot be addressed
by log scaling or standardizing to zero mean and unit variance since the peaks can be quite narrow
and several orders of magnitude greater than the mean value of the function.

As a solution, we normalized the regressed function with the zeroth-order contribution given by the
first term of equation (1), i.e., we transform to a distribution:

f(x) =
f11(x) + f02(x)

f00(x)
. (2)

This first-order term, f00(x), also has a similar peak structure and is highly correlated with the
second-order term, f02(x) with ρ ∼ 0.9. Hence, this normalization yields a distribution, f(x), that

2



is more tractable to regress. Computation of the first-order term from first principles is numerically
inexpensive and does not require regression.
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Figure 1: The building block for a DNN with skip connections.
Deep Neural Network (DNN) with skip connection: in addition to a fully connected DNN, we also
experiment with a DNN with skipped connections (sk-DNN) to address the problem of vanishing
gradients for deeper neural networks. The building block of the sk-DNN is illustrated in figure 1.
Given an input x the output of the block is

y = g (h(x) +Wx) (3)

where h(x) is the output of the third layer with linear activation and W is a trainable weight matrix
of dimension i × j when the input dimension, i, is different from the output dimension, j, and I
otherwise. The structure of this block can be derived from the Highway Network [19] architecture
with the transform gate set to I and the carry gate set to W for dim(x) ̸= dim(y) and I otherwise.
Structurally, the sk-DNN block is similar to a ResNet block [10] with a different set of hidden layers.

Symmetry properties reduce the number of required functions

Dimensionality Total functions Independent functions Sum is physical?

2D 18 5 Yes
4D 162 25 No
8D 8 4 Yes

Helicity Amplitudes: the functions in question are maps, f (n)
ij : Rn → R, where n ∈ {2, 4, 8} and

i, j ∈ {0, 1, 2}, cf. equation 1. The domain of the functions, i.e. the feature space, is mapped to the
unit hypercube and populated from a uniform distribution. The corresponding datasets are generated
using the particle physics simulation code VVAMP [8] from first principles using building-block
functions that we will refer to as form factors. Apart from the 2D dataset, which is a special case
of the 4D one, the same form factors were used to generate the 4D and 8D datasets. The difference
between the 4D and 8D feature spaces lies in the physics of the process in question, namely the
number of external particles the functions describe. The regressor of the 4D functions, g(4)ij ≈ f

(4)
ij ,

can be used to generate the 8D functions, f (8)
ij , after multiplying by two other (exact) functions that

are computationally inexpensive to calculate and summing them.

The number of resulting functions, technically called helicity amplitudes, depends on the dimension
as shown in table 2. While the number of required regressors for the 4D feature space is the largest,
it also offers the most flexibility for further downstream physics analyses. Specifically, to generate
the 8D functions, more details of the process have to be specified during data generation which is
then frozen into the regressor. Consequently, different particle physics analyses will require different
regressors. By contrast, the 4D regressors are more general-purpose and do not contain any frozen
physics parameters.

Symmetry properties: the full set of functions, f (n)
ij , for any dimension, n, is over complete. Pairs

of functions can be mapped into one another via particular permutations of the external particles

3



the process describes. This translates into a linear transformation on the second coordinate, x2,
independently and in combination with the permutation of the third and fourth coordinates, x3 and
x4, in feature space. For example, in 4D, two permutations π12 : p1 ↔ p2 and π34 := p3 ↔ p4,
where pi is a particle with label i reduces the number of independent functions from 162 to 25.

Coordinate symmetry from particle symmetry

Permutation particle symmetry coordinate symmetry

π12 p1 ↔ p2 x2 → 1− x2

π34 p3 ↔ p4 x2 → 1− x2 and x3 ↔ x4

For the neural networks, we focus on the depth, width and number of trainable parameters in the
regressor (denoted as width-depth (trainable parameters) in the tables and figures). The depth of the
sk-DNN denotes the number of sequential sk-DNN blocks in the regressor and not the total number
of layers. The width of the sk-DNNs is chosen to be half the width of the DNNs and the depth of the
sk-DNN is adjusted so that they have approximately the same number of parameters as the DNNs
with similar depth. One exception is that the sk-DNN with 2 blocks has more parameters than the a
DNN with 2 layers. The data strategy remains the same for BDTs, DNNS and sk-DNNs.

Baselines: We build a baseline without any optimization for BDTs, DNNs and sk-DNNs. For all the
regressors, we do not normalize the data as described in section 2, rather, we only log scale the data.
We set the train-validation split to 80%-20%. For the BDTs, we use an ensemble with max-depth =
50, set the learning rate to 0.1. For the DNNs and sk-DNNs, we fix the learning rate of the Adam
optimizer at 10−3, lower the patience to 10 rounds, and use the most effective architecture chosen
from amongst the high-precision regressors. The results are presented in table 1. We see that without
the optimizations the DNNs fail to regress the function and the BDTs perform very poorly.

2D |δ| < 1%(%) |δ| < 0.1%(%) µδ(%) σδ(%)

DNN 12-56 (35,337) 99.98 49.26 0.0005 0.17
baseline (8-56) 77.16 9.01 0.1361 1.83

sk-DNN 14-28 (33,461) 99.97 73.08 −0.0022 0.12
baseline (9-28) 90.79 15.31 0.0173 1.39

BDT max-depth: 50 100.0 99.16 0.0 0.02
baseline (50) 99.91 94.04 −0.0045 0.1

4D

DNN 12-72 (58,249) 99.99 63.76 −0.012 0.13
baseline (8-72) 88.67 13.63 0.0449 1.1

sk-DNN 14-36 (54,973) 100.0 84.99 −0.0016 0.08
baseline(9-36) 84.99 10.81 0.2701 1.11

BDT max-depth: 50 99.4 83.19 0.0017 0.18
baseline (50) 95.85 27.8 0.0023 0.55

8D

DNN 8-100 (71,701) 73.48 9.57 0.021 1.17
baseline (8-100) 31.97 3.3 0.799 4.38

sk-DNN 9-50 (67,201) 87.28 13.52 0.007 0.75
baseline (9-50) 30.91 3.23 −0.547 4.85

BDT max-depth: 20 72.6 12.06 0.0577 1.85
baseline (50) 22.33 2.3 1.3953 13.35

Table 1: Performance of various regressors. δ = (ypredicted − ytrue/ytrue). The baseline refers to
regressors trained without any optimization. sk-DNNs outperform other models at 4D and 8D.

Key results: we present a summary of the results of the experiments in table 1. Several architectures
with increasing maximum depth for BDTs, and increasing depth and width for DNNs and sk-DNNs
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were tested using a validation set to reach an optimal architecture for the regressors. We only show
the best-performing models of each kind for each data set in table 1. We show that boosted decision
trees are reliable workhorses that can easily outperform DNNs at lower dimensions even when very
large and complex neural networks are used. However, this edge that BDTs have over neural networks
tends to fade at higher dimensions especially when DNNs with skip connections are used. In fact,
for 8D data, it is imperative that sk-DNNs be used as it allows us to get close to the benchmark of
δ < 1% over 90% of the domain of the function. Moreover, once the models are sufficiently complex
to learn the data well, sk-DNNs outperform DNNs that have twice the number of parameters. The
disadvantage of the BDTs is that they take up significant disk space as the ensemble grows large,
which is necessary for high precision applications but affects their portability. Hence the sk-DNNs
are a good solution for having a portable, yet accurate regressor.

Reduction of computational burden: generating the 2D, 4D and 8D datasets required 144 hours on
96 AMD EPYC 7402 cores for 13 million data points per set. This had to be done twice, once for the
2D dataset and once for the 4D and 8D datasets which were generated from the same computationally
intensive form factors which have to be calculated from first principles. In contrast, the regressors
that we build generate a million samples in a few seconds to a few minutes on any desktop computer.
The training of these regressors can also be performed on a desktop computer with or without a GPU
and takes a few hours to just over a day. The code and data necessary to reproduce this work can be
found at https://github.com/talismanbrandi/high-precision-ml.

Contribution to sustainability

Monte Carlo simulations of physics processes leave a very large carbon footprint. It is estimated that
about 50% of the energy budget of each experiment at the Large Hadron Collider is consumed by
such simulations. Hence, our work directly contributes to reducing the carbon footprint significantly
through a much more efficient way of generating these events.

The regressors we build can be trained on personal computers with a few CPU threads and a single
GPU in under a day as our focus has been to build lightweight models. No special hardware is
required to train or test these regressors. The generation of the simulated data however requires
high-performance computing clusters and we are making this data publicly and freely available for
future research.
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