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Abstract

Analysis of galaxy–galaxy strong lensing systems is strongly dependent on any
prior assumptions made about the appearance of the source. Here we present a
method of imposing a data-driven prior / regularisation for source galaxies based on
denoising diffusion probabilistic models (DDPMs). We use a pre-trained model for
galaxy images, AstroDDPM, and a chain of conditional reconstruction steps called
denoising diffusion restoration model (DDRM) to obtain samples consistent both
with the noisy observation and with the distribution of training data for AstroDDPM.
We show that these samples have the qualitative properties associated with the
posterior for the source model: in a low-to-medium noise scenario they closely
resemble the observation, while reconstructions from uncertain data show greater
variability, consistent with the distribution encoded in the generative model used as
prior.

1 Introduction

Gravitational lensing, the phenomenon of light bending trajectory under the influence of gravitating
mass, has enabled progress in diverse areas of physics: from discovering some of the furthest
observed galaxies in the Universe [1, 2] and analysing them [e.g. 3] to inferring the dark matter
content of clusters and its distribution on galactic and sub-galactic scales [4–9], including detections
of individual light dark matter halos without luminous counterparts [10–12], and measuring the
Hubble constant [13, 14]. Critical in most endeavours is the ability to model the complex morphology
of lensed sources, either as a goal in and of itself, or in order to disentangle their surface brightness
inhomogeneity from perturbations in the lens.
Existing strong-lensing source models can be roughly classified in four categories with increasing
complexity: analytic parametrisations like the Sérsic profile [15, 16]; regularised pixellation of
the source plane [17–21] (where the regularisation can be implicit in the use of e.g. a Gaussian
process prior [22] or continuous neural fields [23]); basis function regression onto e.g. wavelets
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[24] or shapelets [25, 26]; and deep learning approaches with e.g. recurrent inference machines
[27–29] or variational autoencoders [30]. While the former three categories are based on specific
model assumptions, the deep-learning approaches are data-driven: it aims to learn from observations
what typical galaxies look like and steer reconstructions appropriately. And while the current set of
galaxy–galaxy strong lensing observations number on the order of hundreds, mainly coming from
dedicated campaign like SLACS [31–33] and BELLS [34, 35], future general-purpose cosmological
surveys are expected to deliver hundreds of thousands more [36], which underlines the need for fast
and robust inference methodologies.
In this work we demonstrate galaxy–galaxy strong-lensing source reconstruction using denoising
diffusion, the state-of-the-art deep-learning generative technique at the core of recent striking text-to-
image models like DALL-E 2 [37]. The aim of any generative model (see e.g. Bond-Taylor et al. [38]
for a “recent” review) is to learn from (usually very high-dimensional) data an approximation to the
underlying distribution from which it has been drawn and enable easy sampling of new high-fidelity
examples. Denoising diffusion probabilistic models (DDPMs), introduced by Sohl-Dickstein et al.
[39] and elaborated by Ho et al. [40], achieve this by learning to reverse the gradual degradation of
an input with random noise. By carefully designing both the noising and denoising processes, one
can arrive at a particularly simple structure of the overall model, where a neural network (NN) is
trained to predict the mean of a Gaussian used in denoising.
We use a DDPM pre-trained on galaxy images called AstroDDPM [41] and a modified sampling
procedure called denoising diffusion restoration model (DDRM) [42] to condition the generation on
a particular strong-lensing observation. We verify that this results in samples that exhibit desirable
properties of the Bayesian posterior: when the noise in the observation is low, reconstructions follow
it closely, while when noise is significant, samples are dictated by the data-driven prior encoded in
AstroDDPM and show significant variation while still being consistent with the data. We expect the
denoising diffusion approach to source reconstruction to prove instrumental in generating constrained
training examples for simulation-based inference of dark matter substructure properties.

2 Background

2.1 Galaxy–galaxy strong gravitational lensing

Galaxy–galaxy strong gravitational lenses are usually modelled in the thin-lens approximation
whereby all observed light is assumed to have originated from a specified source plane and been
deflected by mass concentrated in a lens (or image) plane located between the source and the observer.
Thin-lensing is entirely defined by the field of deflection angles, which is calculated from, and thus
encodes, the mass distribution in the lens plane: see Meneghetti [43] for full details.
Importantly, gravitational lensing preserves surface brightness since it does not create or destroy
photons, and so the observed flux in the image plane is simply the flux of the source at the origin
of the ray. This means that lensing is a linear process, and source reconstruction can be phrased as
a linear inversion problem, if the source is modelled on a (possibly irregular) grid, as recognised
by [17, 18]. Since the grid can be made as fine as possible, while the observations have a fixed
(usually coarse) resolution, and due to the almost complete degeneracy between lens and source, the
regularisation and/or Bayesian prior on the source model has a crucial role both for the quality of the
reconstruction, and for subsequent analysis performed with it (e.g. lens substructure inference).
Usually, the lensing configuration is a priori unknown (or weakly constrained by observations of the
light of the lens galaxy) and often itself a target for inference. In this work, however, we focus only
on source reconstruction, so we assume we know the details of the lens perfectly: i.e. we know both
the mass configuration and the light of the lensing galaxy, which we can perfectly subtract from the
observation. Our model, then, can be stated as

yobs = Hlensxsrc + z, (1)

where yobs ∈ Rn is the observed image (flattened to a vector), xsrc ∈ Rm is the gridded source model,
and z is observational noise, assumed i.i.d. Gaussian in each pixel: z ∼ N (0, σ2

y1). The n-by-m
matrix Hlens encodes the lensing distortions, instrumental effects (such as a point-spread function),
and interpolation of xsrc across the grid on which it is defined. We use a ray-tracing code built with
PyTorch in order to calculate Hlens with automatic differentiation of a forward simulation (since
eq. (1) is linear, the particular values used for xsrc in the forward pass are immaterial).
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2.2 Denoising diffusion probabilistic models (DDPM)

DDPMs are a class of unsupervised density estimation techniques that aim to learn the underlying
distribution q(x) of data {Xi}Ni=1 in a way that is then easy to sample from. They achieve this by in-
troducing T latent spaces xt for t = 1 : T , which are modelled in two ways: via a forward (diffusion)
and a reverse (generative) processes. The forward process is a Markov chain that slowly adds Gaussian
noise with increasing variance1 βt to the initial data point: q(t)(xt |xt−1) = N (

√
1− βtxt−1, βt1),

ending up with essentially pure noise. The model then learns the inverse (iteration-dependent) denois-
ing operation p

(t)
Θ (xt |xt+1), which is usually again modelled as a Gaussian with pre-determined

variance, whose mean is provided by a neural network fΘ(xt+1). Optimisation is performed with
gradient ascent on the evidence lower bound (ELBO) of this model: a measure of the similarity over
the training data between the forward and reverse distributions of the latent spaces:

q(x0:T ) = q(x0)

T∏
t=1

q(t)(xt |xt−1) ↔ pΘ(x0:T ) = p
(T)
Θ (xT )

T−1∏
t=0

p
(t)
Θ (xt |xt+1). (2)

While q(x0) is approximated with the training data, p
(T)
Θ (xT ) is set to a Gaussian with unit variance,

so that one can draw pure noise and iteratively denoise it to obtain a new sample for x0.

2.3 DDPM as a prior: denoising diffusion restoration model (DDRM)

We would like to use the learnt approximation to q(x) as a prior for the linear inversion problem
stated in eq. (1), i.e. sample from the posterior p(x |y) ∝ q(x) p(y |x) with a Gaussian likelihood
p(y |x) = N (y |Hx, σ2

y1). This can be achieved by conditioning q(t) and p
(t)
Θ on y and training

bespoke density estimators (i.e. denoisers) for each observation. However, this is obviously very
computationally expensive and does not scale to analyses of multiple systems that differ only by the
lensing matrix Hlens but not by the assumed prior on x.
Kawar et al. [42, 44] showed that, under certain conditions, a pre-trained DDPM model can be indeed
used as a prior in a linear inversion model in order to sample from a constrained generative process
pΘ(x0:T |y) = p

(T)
Θ (xT |y)

∏T−1
t=0 p

(t)
Θ (xt |xt+1,y). Their solution is expressed in the singular

space of H and therefore starts with computing its singular value decomposition (SVD):

H = USV>, (3)

and applying the transformations ȳ ≡ S+U>y (where S+ is a Moore–Penrose pseudo-inverse) and
x̄ ≡ V>x. The sampling procedure then considers separately components which are constrained
by the data—i.e. those that have a positive singular value si > 0—from those that are not (si = 0).
Crucially, in the initial iterations, in which the noise level in the Markov chain is larger than the
observational uncertainty, the denoising procedure is steered towards the observation with a weight
ηb = 2σ2

t /(σ
2
t + σ2

y/s
2
i ), where σ2

t is the accumulated noise variance at step t. At each step, the
pre-trained denoiser fΘ is only used to calculate the mean for the following step: xΘ,t = fΘ(xt+1),
which is then rotated into x̄Θ,t ≡ V>xΘ,t. DDRM has one hyperparameter, η, which relates to
the specific way the denoising network has been trained and also influences the amount by which
denoising is steered towards the observation. The specific form of the DDRM updates is given in
eqs. (4) and (5) in appendix A.

3 Demonstration on mock data and discussion

In this section, we apply DDRM to realistic mock observations of galaxy–galaxy strong lensing. We
use the AstroDDPM2 network [41], pre-trained on the PROBES dataset [45, 46], which contains
1962 images of late-type galaxies that exhibit fine structure and details. We note that the PROBES
dataset may not be representative of high-redshift source galaxies appearing in strong lenses, and so
future analyses should check for possible biases due to the choice of training data. Since AstroDDPM
is a multi-channel model (with channels corresponding to the g, r and z photometric bands), in order

1There are two conventions for scheduling the noise, termed “variance exploding” and “variance preserving”.
Here, we present the latter, which is used to train AstroDDPM, even though the DDRM implementation we use
is variance exploding: for the conversion between the two, see Appendix B of Kawar et al. [42].

2https://github.com/Smith42/astroddpm, released under the AGPL-3.0 open-source license
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Figure 1: Top: from left to right, the mock observation, y (with a medium noise level), the true
source, x (an unconstrained sample from AstroDDPM), the mean and standard deviation of 100
posterior samples from DDRM, x0,i ∼ pΘ(x0 |y), and the residual of the mean with respect to the
true source and with respect to the observation in the image plane; finally, a histogram of the latter
compared to a Gaussian. Bottom: each column is a random posterior sample (top row), which is
then lensed to produce the respective noiseless image Hx0,i (middle row). Shown (bottom row)
are also the residuals between Hx0,i and the observation. In residual plots, negative values in one
channel are shown as positive values in the other two (red↔ cyan, green↔magenta, blue↔ yellow),
considering complementary colors as “negative”.

to avoid biases, we simulate and analyse multi-channel images as well, considering an independent
likelihood as in eq. (1) for each channel. We note, still, that it is possible to include any linear
operation on the channels (e.g. “selecting a channel” or “averaging channels”) inside Hlens.
We set up a uniform source-plane grid spanning 1′′ × 1′′ with m = 256× 256 pixels, to match
AstroDDPM. We choose a resolution of 0.05′′ and n = 50× 50 pixels in the image plane, as
appropriate for Hubble observations and set up a lens configuration so that multiple images are
formed. In the end, only ∼1000 image pixels trace back to the source grid. As a source image we use
an unconditioned sample from AstroDDPM.
To account for integrating the flux within an pixel, which is especially important in highly-magnified
parts of the image, when calculating Hlens, we simulate at a 10-times higher image resolution and
then downsample with local averaging. As a cross-check, we have verified that multiplying Hlensxsrc
matches the full simulation output to numerical precision. Finally, we add independent pixel noise.
We test two settings: a “medium-noise” regime where σy is set to 1/30 of the brightest image pixel,
consistent with typical SLACS lenses; and a “high-noise” regime with peak signal-to-noise ratio of
only 6 in order to verify that the DDRM produces enough variation when the observation is not very
constraining.
Our main results are displayed in fig. 1. We set η = 1 in accordance with the theorem of Kawar et al.
[42] and sample 100 realisations, which takes ∼10 min on an NVIDIA A-100 GPU. We verify that in
this medium-noise setting, the true source is reconstructed with high fidelity even from only ∼1000
pixels, owing to the multiple observed projections and properly taking integration within a pixel into
account. Standardised residuals between the lensed mean reconstruction and the observation follow a
unit normal distribution and show no structure or signs of bias. Individual samples vary to a degree
appropriate for the observational noise.
If the noise level is increased by a factor of 5, the reconstructions show accordingly higher variability
(see fig. 2 in the appendix). Conditioned samples now follow more closely the prior and display a
larger variety of morphologies, sizes and brightnesses, while still being consistent with the observation
(the residuals of the mean are still approximately normal), although reconstructions seem to be slightly
dimmer in the red (brightest) channel.
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4 Conclusion

We have shown that one can use a pre-trained denoising diffusion model and the procedure in DDRM
to reconstruct source galaxies from noisy strong gravitational lensing data with high fidelity. The
reconstructions exhibit a qualitative variability necessary for them to be interpreted as samples from
a posterior for the source’s appearance, and we intend to perform quantitative tests, e.g. using the
classification 2-sample test [47, 48], over a large number of mock observations to verify this. Such
tests will also aid in setting the hyperparameter η of DDRM. In future work we will also unite DDRM
source reconstruction with a scheme for inferring the mass distribution of the lens galaxy, which
defines the distortion matrix Hlens. Finally, our intended application for the method presented here is
for generating training data for simulation-based inference of dark matter substructure, which will
require an extension of the methodology to handle the correlated and spatially varying noise present
in real lensing observations. We are confident that even in its present form, strong-lensing source
reconstruction with DDRMs can be a useful tool for astrophysics and cosmology.

Broader Impact This work is focused on the precision analysis of strong gravitational lensing data
via diffusion models, a class of generative models. Unfortunately, there are numerous well-known
malicious uses of generative models (e.g. sample generation techniques can be employed to produce
fake images and videos that can impact people’s lives). On the other hand, through our analysis of
source reconstruction in strong lensing, we have proven diffusion models to be useful for solving
high-dimensional Bayesian inference problems thanks to their ability to capture the statistics of
natural datasets. Although we do not anticipate potential for misuse of the presented application, the
usual caution has to be exercised when drawing scientific conclusions based on a complex analysis
machinery.
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A Appendix: denoising diffusion restoration model (DDRM)

Starting with the SVD of H = USV> and the transformed observation ȳ ≡ S+U>y (with + a
Moore-Penrose pseudo inverse), DDRM consists of applying the following updates:

p
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(4)
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(i), σ2
t − η2

b

σ2
y

s2i

)
if σt ≥ σy/si.

(5)

Here ·(i) labels the ith component of a vector. At the beginning of each iteration, the current
transformed prediction x̄t+1 is de-rotated into xt+1 = Vx̄t+1, which is then denoised: xΘ,t =
fΘ(xt+1), and rotated back into x̄Θ,t ≡ V>xΘ,t.
Equation (5) allows for controlling the relative information content carried by noise versus that
encoded in the network: when η = 1, unconstrained pixels (first case) are sampled independently
at each denoising step, whereas setting η = 0 connects them deterministically to the initial noise
realisation. Furthermore, in high-noise scenarios, which correspond to the second case of eq. (5), η
controls how strongly denoising is steered towards the particular observation, with low values leading
to stronger conditioning.
Kawar et al. [42] prove the equivalence of the DDRM and DDPM ELBO objectives, which allows
one to use a pre-trained unconditioned DDPM model as a denoiser in DDRM, under the condition
η = 1. They show that for other choices of η (and even of ηb, which may also be considered a
hyperparameter), the objectives remain similar, so approximate DDRM can still be performed.
In figs. 3 and 4 we briefly explore the effect setting a low η = 0.03 has on reconstructions. In the
medium-noise scenario, fig. 3, results are similar to using η = 1, but now the generative process
produces artefacts like spots, which are common in unconditioned AstroDDPM samples (see fig. 2
of Smith et al. [41]) but unwarranted by data. In the high-noise setting, fig. 4, residuals are much
improved from the case of η = 1 due to the stronger conditioning on the observation. These
qualitative tests show the importance of tuning η so as to match the regime in which AstroDDPM
has been trained (in fact, Smith et al. [41] use the equivalence between DDPM and score-matching
described in Ho et al. [40] to train their model, so they do not need to explicitly set a parameter like
η). We plan to optimise η in the future by quantitatively measuring the quality of posterior samples
with the classifier 2-sample test [47, 48].
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Figure 2: Same as fig. 1, but with the high noise setting (peak signal-to-noise ratio 6).
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Figure 3: Same as fig. 1 (medium-noise setting), but inference has been performed with η = 0.03.
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Figure 4: Same as fig. 2 (high-noise setting), but inference has been performed with η = 0.03.
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