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Abstract

Generative deep learning methods built upon Convolutional Neural Networks
(CNNs) provide great tools for predicting non-linear structure in cosmology. In this
work we predict high resolution dark matter halos from large scale, low resolution
dark matter only simulations. This is achieved by mapping lower resolution to
higher resolution density fields of simulations sharing the same cosmology, initial
conditions and box-sizes. To resolve structure down to a factor of 8 increase in mass
resolution, we use a variation of U-Net with a conditional Generative Adversarial
Network (GAN), generating output that visually and statistically matches the high
resolution target extremely well. This suggests that our method can be used to
create high resolution density output over Gpc/h box-sizes from low resolution
simulations with negligible computational effort.

1 Introduction

Cosmological galaxy surveys, both current and planned, span increasingly large volumes, e.g. DESI
[1], EUCLID [2], DES [3] and LSST [4]. In the previous decade, surveys such as the Baryon
Oscillation Spectroscopic Survey [5] have used bright red galaxies as tracers of large scale structure.
To make larger maps, the current and next generation of surveys rely on utilizing fainter galaxies.
Spectroscopic surveys specifically are planning to observe galaxies targeted by the presence of star
formation within them. Such galaxies, some of them Emission Line Galaxies (ELGs; [6]), are the
cosmological workhorse of the next decade. An important issue with creating bigger large-scale
structure with smaller galaxies is being able to simulate such maps computationally. ELGs reside
in halos at or below the mass scale of our own Milky Way [7; 8]. Thus, simulations of such galaxy
samples require not just large volume, but also higher mass resolution than previously needed. A
single simulation with equal volume of the DESI ELG sample that properly resolves all halos in
which ELGs could form would require upwards of 95003 particles, assuming a volume of 122 Gpc
and a resolution of halos at around 1000 particles for 1011 M⊙ halos. We often need a large suite
of such simulations to explore various parameters or build up statistics. This will quickly become
computationally too expensive to simulate using conventional methods.
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A promising solution to this problem is the use of deep learning networks. Various works in recent
years applied convolutional neural networks to cosmological applications successfully, generally
increasing small scale structure information (e.g. galaxy distributions in [9], mapping dark matter to
galaxies in [9; 10], extracting cosmological information while marginalizing over baryonic effects in
[11], or for general simulation output [12; 13; 14]. In the case of creating cosmological simulations
spanning large volumes, a simple first approach is to use dark matter only (DM-only) density fields.

In this paper, we propose a novel method to predict the redshift z = 0 density field of a high resolution
simulation, from the z = 0 density field of a low resolution simulation of the same volume, run using
the same cosmology and initial conditions. High and low resolution here refers to the simulation’s
particle mass and the number of particles used inside the simulation volume. The halos and subhalos
in this high-resolution output can be populated with galaxies in any number of ways, as required by
the specific goal of the mock galaxy catalog (see [15] for a review on the galaxy-halo connection).

This paper provides a first proof of work that uses density fields to super resolve dark matter halos.
Previous works either focus on other statistics such as void abundance [14], or use particle displace-
ment fields that assume lattice pre-initial conditions (pre-ICs, the Lagrangian particle positions) [16]
and therefore cannot be applied to many of the state-of-the-art simulations using glass pre-ICs.

In particular, our presented method can be applied to dark matter simulations with glass initial
conditions [17] (here after: IC) while previous super-resolution techniques such as [18] cannot. Many
state-of-the-art simulations use glass IC, such as the Illustris project [19] while there is currently
no satisfactory way to interpolate those glass IC particles onto a grid in order to compute their
displacement field needed by previous super-resolution methods such as [16; 18]. Rather than
wasting computational resources on new costly simulations for super-resolution tasks, we develop the
alternative Eulerian method to exploit the existing state-of-the-art cosmological simulations initialized
using glass IC.

2 Data and Method

2.1 Simulations and Data

In this work, we use redshift z = 0 data from the Illustris-2-Dark (high-res) and Illustris-3-Dark
(low-res) dark matter only simulations [19] for training and testing. Both simulations span the same
volume of (75 Mpc/h)3, use the same cosmological parameters, the same glass-tiled IC and vary only
in the number of simulated particles and their mass.

In our proposed method, we do however use grids to create density grids, but do not need to
create a displacement field (which requires having at least one particle per pixel in order to find its
displacement field).

Our deep learning method utilizes convolution layers, which are typically applied to imaging data
that has translational symmetry. Convolutional neural networks (CNNs) generally work well with
equidistantly gridded n-dimensional data. In our case, a fixed spatial resolution is perfect for a CNN.
We prepare dark matter density maps, with a 20483 grid, creating a number count density field, where
each 3D voxel of side-length ≈ 36.6 kpc/h contains information about the number of particles that
lie inside that small region. Each voxel’s field-value is obtained by TSC interpolating the Illustris
catalogs onto a mesh and then log1p-normalizing, reducing the feature distribution ranges. Each of
the data sets is then subsequently divided into eight sub-cubes of equal size (37.5 Mpc/h on the side),
from which six are used for training, one for validation, and the last one for testing. This results in
the low resolution input (Illustris-3-Dark) and high resolution target (Illustris-2-Dark) simulations
being divided into 32768 3-dimensional 643 voxel cubes, of which an eighth is used for testing.

2.2 Method

At the 36.6 kpc/h pixel scale, dark matter clusters in the low and high resolution simulations are
spatially shifted by a significant amount from each other. This is due to the addition of high-frequency
modes in the high-resolution simulation. This makes the simpler training approach of supervised
learning (e.g. using a mean squared error loss function) impossible, as the model does not have
enough information to predict this shift and will simply blur the output. Recent works (e.g. on
displacement fields not density fields [16]) showed that an unsupervised approach to deep learning
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is a possible pathway forward given the limitation described here. We apply the method of GAN
training [20] with a few modifications, i.e. we simultaneously train a generator (G) and discriminator
(D) to generate simulation output and discriminate between real and artificial data. Nevertheless,
in this work G needs to generate output, not from a randomly sampled input distribution, but from
the low resolution training cubes and from white noise fields in the noise layers. In order to help
the discriminator differentiate between real and fake data, the low-res input is concatenated to the
generated output and high-res target before passing the data through D. The training process thus
is no longer purely unsupervised, and our novel method is more accurately labeled as conditional
GAN, an adapted version of the standard approach first introduced by [21], which utilized a different
architecture.

This results in the following loss functions for the discriminator and generator in this work:

LD = − Ex̂,x [logD(x̂, x)]

− Ex̂,z [log(1−D(x̂, G(x̂, z)))]

− γ Ex̂,x[∥∇D(x̂, x)∥2]
(1)

LG = − Ex̂,z [log(D(x̂, G(x̂, z)))] , (2)

where x is sampled from the high-res distribution phigh-res, x̂ is sampled from the low-res distribution
plow-res and z is sampled from a random white noise distribution pz . The third term in equation 1 is
the R1 regularization (introduced in [22]), which is applied for real data only. The chosen penalty
weight γ = 5 is set constant.

2.3 Models and Training

Training is not too sensitive on the exact discriminator architecture, as long as the main idea of
progressively extracting higher-level features by down-sampling convolutions is followed.

The exact generator architecture however, is extremely important to a successful training process.
The model, is a shallower adaptation of the often used U-Net [12; 23; 24; 25], utilizing heavily
on CNNs’ translational equivariance which is especially useful in cosmological applications. The
most important change from a conventional U-Net is that we replace the transposed upsampling
convolution by a tri-linear interpolation followed by a usual convolution. We also add noise layers to
help the generator predict the highly non-linear structure of the high-res target. Please refer to the
data availability section for more details on the exact architecture.

3 Results and Conclusion

The visual differences between the low-res input and generated output / high-res target simulation
become clear immediately in figure 1, especially when looking at the smaller mass halos that are
missing in the low-res simulation data. As expected, the generated output matches the high-res
simulation on large scales thanks to the conditional GAN training, while on small scales the generated
fine structures are different from the ones in the simulated projection but look statistically consistent.
For quantitative comparisons, we need to look at various matter and halo statistics which provide a
more solid and consistent way to quantify model performances.

As the resolution of both low-res and high-res simulation is already very high, the most common
statistics (i.e. power spectrum, particle two-point-correlation function, etc.) don’t show differences
between the two. This of course can consequently not be used to show the model’s performance.
Importantly though, the dark-matter halo two-point function (or auto-correlation function) clearly
proves the model’s performance by comparing statistical clustering of FoF (friends-of-friends) halos
produced from the corresponding particle catalogs.

The halo auto-correlation function shown in figure 2 is calculated by counting halo pairs in binned
distance-regions by using the halo’s central positions xi, providing an estimate for the excess
probability of finding halo pairs at a given spatial distance x:

ξ2(x) ≡ ⟨δ(x1)δ(x2)⟩ , x = |x1 − x2| (3)
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Figure 1: left: low-res catalog, middle: generated output catalog, right: high-res catalog. Plotted
are projections on the z-axes of each catalog’s particles, where FoF halo particles, are highlighted
in orange. The generated output is indistinguishable from the high-res plot by eye on large scales.
At smaller scales, the shapes and positions of small halos look statistically consistent but vary a bit
between the two as expected, whereas they are completely missing in the low-res plot. The depicted
testing-region box is not periodic as it only spans one eighth in volume of the entire corresponding
Illustris simulation, which spans (75Mpc/h)3.
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Figure 2: The halo two-point function comparison between testing data and "true" un-pixelated
Illustris simulation catalog FoF halos of the testing region, calculated using the Landy-Szalay
estimator. low- and high-res: training data, Illustris-3 and -2: unpixelized "true" simulation data,
generated: network output.
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Importantly for halos between 2 · 1010 M⊙ and 6 · 1010 M⊙, a clear difference between the low
resolution and high resolution simulation can be seen. The network manages to match the high
resolution simulation perfectly, proving its performance of producing particles affected by extremely
small-scale clustering physics and not simply up-scaling low-res density fields. It also matches the
two-point functions for higher mass halos, which is to be expected as those halos are larger in size
and easier to predict.

This work pushes the resolution limit (of for example [18; 26], while also being more generally
applicable to state-of-the-art DM-only simulations than e.g. displacement field training solutions, as
it only relies on knowing the particle positions at snapshot z = 0 and nothing else. It provides an
important first step to building a full suite going from low-res dark matter simulations, to ultimately
producing ELG mock catalogs over Gpc in scale, by predicting new halos at mass ranges relevant to
ELGs with almost negligible computational effort. To populate halos with ELGs, subhalos need to be
accurately identified from the generated output. This requires an even smaller pixel-size and thus
more training data for a given simulation volume, which will be part of future work.

We generate high-res density fields by only investing the CPU time it takes to run the low-res
simulation instead of actually running the entire high-res simulation, as testing only took around 26
CPU hours (Intel Xeon Platinum 8268 24C 205W 2.9GHz Processor) for this paper’s result. Training
time on GPUs is hereby neglected, as finding the correct architecture, hyperparameters, etc., plays an
important role in the model’s training process and is impossible to quantify accurately. It only partly
consists of the final 600 epoch training run, which eventually produced this work’s trained model.

This result is also naturally scaleable to significantly bigger testing regions by simply passing more
low-res input through the trained model.

Broader Impact

This work successfully shows the capabilities of conditional generative deep learning methods inside
the field of cosmology. We showed that it is possible to accurately predict small scale highly non-
linear dark matter clustering given a lower-resolution simulation with negligible computational effort.
Within the astronomy community, this work will be helpful as a publicly available method to enhance
the resolution of computationally expensive state-of-the-art large scale glass-IC dark matter only
simulations. This pipeline provides an important first step towards producing ELG mock catalogs
from low-resolution simulations, not only saving a lot of CPU-time, but making previously impossible
ELG mock catalogs at scales relevant to observations, even achievable in future work.

In a broader context, we show that generative adverserial deep learning methods similar to this one,
might also be used to map other general low-res density fields to a higher-res target, improving any
given arbitrary simulation of fields.
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where described shortly at the end of section 3.

(c) Did you discuss any potential negative societal impacts of your work? [No] The field
of cosmology (just as most of physics) does not have a direct impact on society.
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(a) Did you include the code, data, and instructions needed to reproduce the main exper-
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were chosen)? [Yes] See section A.
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ments multiple times)? [No] We ran the training with a different seed and got almost
identical results. Training used up quite many GPU nodes, thus our resources where
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applicable? [N/A] Does not apply.
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Board (IRB) approvals, if applicable? [N/A] Does not apply.

(c) Did you include the estimated hourly wage paid to participants and the total amount
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A Data availability

All code and models used and created in this work are publicly available on GitHub under the
following url: https://github.com/dschaurecker/dl_halo. Please refer to the ReadMe file
in the dl_halo repository for a very in-depth guide through the code and the process of training and
testing. The training code builds upon Yin Li’s map2map code repository, available on GitHub as well
(https://github.com/eelregit/map2map). It allows for general training of n arbitrary input
fields to n arbitrary output fields using custom models, normalizations and loss functions. Furthermore
some utilities from nbodykit an "Open-source, Massively Parallel Toolkit for Large-scale Structure"
[28] were used in pre-processing and statistical evaluation of this work.
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