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Abstract

Particle accelerators require continuous adjustment to maintain beam quality. At
the Advanced Photon Source (APS) synchrotron facility this is accomplished using
a mix of operator-controlled and automated tools. We have recently implemented
Bayesian optimization (BO) as one of automated options, significantly improving
sampling efficiency. However, poor BO performance was observed in certain
scenarios due to time-dependent device drifts. In this work, we discuss extending
BO to an adaptive version (ABO) that can compensate for distribution drifts
through explicit time-awareness, enabling long-term online operational use. Our
contributions include advanced kernels with physics-informed time dimension
structure, age-biased data history subsampling, and auxiliary time-aware safety
constraint models. Benchmarks show better ABO performance in several simulated
and experimental tests. Our results are an encouraging step for the wider adoption
of ML-based optimizers at APS.

1 Introduction

Modern particle accelerators face increasing performance demands, resulting in tighter tolerances
on accuracy and stability [1]. Due to cost, physical limits, and external factors, some amount of
continuous parameter adjustment is constantly required. Historically, this tuning required expert
guidance and intuition, with software tools only allowing for a partial automation. In critical cases,
custom automated solutions were implemented, such as for beam orbit, energy, and tune feedback in
the Large Hadron Collider [2]. With the rise of machine learning, there is immense interest in making
use of the newly available algorithms to implement generic tools to improve reliability, reduce expert
workload, and provide higher performance to the users.

A key application of ML for accelerators is in parameter optimization, whereby one or multiple
objectives are tuned through an intelligent search of the parameter space. A number of conventional
optimization methods are already in use, including simplex[3, 4], RCDS [5], genetic algorithms [6],
extremum seeking [7], and several others. New ML methods include Bayesian optimization (BO) [8],
reinforcement learning [9], and others. BO is of special interest since it allows efficient black-box
function optimization with few samples, taking advantage of any prior physics model knowledge
provided to the algorithm. This work first reviews the basic BO process, and then discusses our

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.



contributions - a set of improvements that permits for continuous, robust, and adaptive BO use for
optimizing time-varying systems.

2 Time-aware Bayesian Optimization

In standard BO process, system output is described by

y = f(x) + ε (1)

where f(x) is the black-box function of interest and ε ∼ N (0, σ2
ε) the added noise. Vector x

(bounded to domain X) has dimension of n x d where d is the parameter space size and n the number
of measurements. Using Gaussian Process (GP), a surrogate model for f can be parameterized
through a multivariate normal distribution with a mean m(x) and covariance kernel k(x, x′) as

f(x) ∼ GP(m(x), k(x, x′)) (2)

k(x, x′) = Cov [f(x), f(x′)] (3)

The kernel is used to evaluate the similarity between values of f at x and x′, and its’ appropriate choice
is critical for good GP convergence. Existing knowledge about the system can be encoded through
prior distributions on kernel and mean, with the distribution parameters called hyper-parameters.
During model fitting hyper-parameters are updated using Bayes’ rule (conditioned on observed data)
and posterior probability distribution p(f | y, x) can then be sampled to get model predictions [10].
BO evaluates a special ‘acquisition’ function over a fitted GP model so as to predict the best next
location(s) to sample. A variety of analytic and Monte-Carlo acquisition functions exist, with one of
simplest being the upper confidence bound (UCB)

UCB(x) = µ(x) +
√

β ∗ σ(x) (4)

where mean µ and variance σ are provided by the GP model. The parameter β allows for trade-off be-
tween exploration (taking risks for high reward) and exploitation (use of known good configurations).

2.1 Time-aware GP model

In accelerator physics, input parameter vector x represents physical device settings, for example
magnet currents, or a physics-informed combination of device inputs called a ‘knob’. Standard
BO optimization treats all inputs equally (but with potentially different lengthscales) by using
multidimensional isotropic kernels, such as Matérn or radial basis function (RBF) [10]. Furthermore,
starting samples are randomized and only freshly collected data is used. To improve convergence
speed, previous work has successfully used historic data to initialize kernel covariance distributions
[11]. Such pre-training works well when experimental conditions are reproducible. However, some
accelerators also have undesired and poorly modelled time-dependent drifts. In standard BO, such
drifts smear out the outputs, effectively increasing noise levels and producing suboptimal steady-state
solutions. Several model-free adaptive approaches have been previously attempted [1], including
extremum seeking and adaptive neural networks. Our work seeks instead to use an explicitly time-
aware model as part of BO algorithm [12], forming adaptive BO (ABO). Formally, we extend f with
explicit time dimension t, such that the system is now described by

y = f(t, x) + ε (5)

In the simplest implementation, above-mentioned isotropic kernels can be extended to cover time
dimension. The only BO algorithm change is in special treatment of acquisition function, where the
next sample time tnext has to be predicted based how long ABO takes to run and how soon next
experimental sample can be measured. Acquisition function is optimized at that fixed future time

xnext = argmax
x∈X

UCB(tnext, x) (6)

However, time effects often have different patterns compared to the other inputs, and it is desirable to
encode this physics knowledge into the GP model. Our approach achieves this through composition
of specialized sub-kernels. Kernel multiplication and addition can be thought of as logical AND and
OR operations along any shared dimensions, and as independent operations on other dimensions. For
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example, multiplication of periodic and RBF kernels produces a ‘locally periodic’ correlation - a
periodic (not necessarily sinusoidal) function that can slowly change shape:

klp = σ2 exp

(
2 sin2 (π|t− t′|/p)

l2

)
exp

(
−(t− t′)2

2l2

)
(7)

Hyper-parameters of this kernel are output variance σ, period p, and lengthscale l. In experimental
applications, some intuition about the underlying drift processes can be gained from historical data
but precise values for (hyper)parameters like number of periodic signals are difficult to specify
ahead of time. An example of experimental beam position data from the APS linear accelerator
(linac) is shown in Fig. 1, demonstrating long-term monotonic drift as well as two distinct periodic
signals. For unknown reasons, one of the periodic signal components changes in strength day to day,
demonstrating the need for not only time-aware but also time-adaptive methods. Also, note how one
of the patterns exhibits a significantly larger noise level, which is yet another time-dependent linac
behavior. Based on historical data, noise levels do not appear to be correlated with the oscillation
pattern changes, and are fitted through the noise hyperparameter in all models.

Figure 1: Linac beam position drift and corresponding signal power spectrum density when all
feedback is disabled, showing two distinct types of signals observed on different days.

In BO, adaptive kernels fall under topic of automatic kernel selection and deep kernel learning,
with several promising recent results [13]. In this work we chose standard spectral mixture (SM)
kernel [14]. SM can approximate any stationary kernel, including ones with oscillatory and local
correlations, and can be physically interpreted via kernel spectral density. It is also the basis for more
complex deep kernels, which we plan to study in the future. To account for non-stationary correlations
such as monotonic drifts, a linear kernel can be added when necessary. For spatial dimensions, we
use a standard Matérn kernel (ν = 2.5) with automatic relevance determination enabled. Output scale
parameters are added to all components except SM. Thus, our final ABO-SM kernel is given by

k(t, t′, x, x′) =
(
kSM (t, t′) + σ2

l klinear(t, t
′)
)
× σ2kMatern(x, x′) (8)

Our ABO code was implemented with BoTorch/GPyTorch libraries, using Monte Carlo samplers and
acquisition functions, as well as standard fitting routines with defaults changed for higher fidelity.
Evaluations were performed on NVIDIA A100 GPU, with single sample latency below 10s (∼ 600s
per run).

3 Results

3.1 Simulations

We first tested both Matérn (ABO-ISO) and spectral mixture (ABO-SM) time kernel versions on
several simulated problems, ranging from synthetic functions to linac particle tracking simulations.
Figure 2 shows an example with sinusoidal corrector drift that produces downstream beam oscillations.
After 20 initial points observed without any input changes (blue line), methods were allowed to run
with identical settings. After approximately a single period, ABO-SM converges on the oscillation
frequency and starts following the drift without any lag, demonstrating that it is in fact predicting
the future location via the model. ABO-ISO tracks changes but has notable lag, resulting in slight
deviations away from the optimum point. Standard BO meanwhile sees the drift as noise and
converges to central suboptimal input value, losing significant performance.
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Figure 2: ABO-SM, ABO-ISO, and standard BO results for a drift simulation with a sinusoidal
perturbation. Top plot shows input parameter values at each step, with colormap denoting the
objective function landscape. Bottom plot shows the objective value observed by each method (i.e.
output for the input of the top plot), with objective value of 0.4 being the true maximum at all times.

3.2 Experimental tests

Experimental tests were done at the APS injector. It consists of a linac [15] and two rings [16, 17]
that bring the electrons to an energy of 7GeV, to be injected into the storage ring. To stabilize beam
parameters, several proportional feedback controllers, called control laws [18], are used. They operate
with pre-computed inverse response matrices derived from experimental data. A recent analysis of
beam parameters noted elevated high frequency jitter levels with control laws enabled, potentially
caused by beam position monitor (BPM) noise or deviations from expected lattice parameters. With
control laws off however, slower but larger amplitude oscillations were observed, as shown in Figure
1. While not large enough to impact overall injector efficiency, eliminating both the slow drifts and
the high frequency noise is desirable for downstream experiments. We tested ABO for that purpose by
picking a suitable BPM and corrector pair at the end of the linac, and using as objective the absolute
value of the trajectory error away from setpoint. Results of this test are given in Figure 3.

Figure 3: No input, proportional feedback, and ABO-SM trajectories in the experimental study.

For the particular dataset shown, beam position exhibited the ‘two frequency’ regime described
previously and ABO-SM with 3 mixture components was used (additional components required
notably more points for a stable fit). Previous 15 minutes of history were used as the training
set for each run, subsampled to 100 points to reduce noise. Results show that ABO was able to
remove the main oscillatory signal at 2.5mHz, with corresponding RMS jitter lowered to 0.23mm
as compared to 0.35mm for control law and 0.33mm for uncontrolled cases. Simulations indicate
that the remaining oscillatory component could have be modelled robustly with longer data collection
time, but convergence speed is strongly dependent on noise levels.
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3.3 Limitations

Above results demonstrate promising ABO performance, and we aim for it to eventually become
a production-ready robust stabilization method for APS accelerators. To that end, we incorporated
and are testing additional features such as time-aware safety constraint modelling (extending [19])
and a digital twin test harness. Main fundamental limitation of all BO methods is poor scaling with
number of dimensions and number of points (O(n3) for exact GP, although better scaling algorithms
[20] are faster for large datasets). Given real-time nature of accelerator optimization, this limits
tractable problems to those with fewer than ∼ 20 parameters. We presently mitigate dataset growth
by intelligently subsampling based on expected data and drift bandwidths, and are exploring recent
work on high-dimensional spaces [21] to improve evaluation performance.

4 Conclusion

Improving robustness and adaptability of ML-based optimizers is a crucial step in making these tools
useful in day-to-day accelerator operation. We have demonstrated that BO can be usefully modified
with the explicit addition of the time dimension so as to fit a wide variety of experimentally-relevant
distribution drifts. With a special spectral mixture kernel, ABO can applied to problems with unknown
or varying number of periodic and local correlations. Results on both simulated and experimental
tasks, while not perfect, significantly improve on standard BO performance. Future work will focus
on improving GP hot-start with pre-training on more varied historical data, and exploring DKL neural
networks for further kernel model improvements.

5 Broader Impact

Particle accelerators have often been called the engines of discovery, since their advances underpin
much of the progress in other fields like particle physics, material science, structural biology, and
beyond. Synchrotrons in particular each serve dozens of experimental beamlines, with user com-
munities comprising hundreds of scientists. Our work will contribute to the improved performance
and reliability of the APS accelerator systems, allowing for more beam time to be delivered to
users and thus improving their scientific output. It is hard to speculate as to the effects of our work
beyond accelerator community. ABO is an in-place upgrade for any process where standard Bayesian
optimization can be used, and expands BO applicability to strongly drifting systems. It will thus
increase the impact (positive or negative) of the underlying process, but on its own, does create any
biases or other issues.
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