
Transfer Learning with Physics-Informed Neural
Networks for Efficient Simulation of Branched Flows

Raphaël Pellegrin
Harvard University

raphaelpellegrin@fas.harvard.edu

Blake Bullwinkel
Harvard University

jbullwinkel@fas.harvard.edu

Marios Mattheakis
Harvard University

mariosmat@seas.harvard.edu

Pavlos Protopapas
Harvard University

pavlos@seas.harvard.edu

Abstract

Physics-Informed Neural Networks (PINNs) offer a promising approach to solving
differential equations and, more generally, to applying deep learning to problems
in the physical sciences. We adopt a recently developed transfer learning approach
for PINNs and introduce a multi-head model to efficiently obtain accurate solutions
to nonlinear systems of differential equations. In particular, we apply the method
to simulate stochastic branched flows, a universal phenomenon in random wave
dynamics. We compare the results achieved by feed forward and GAN-based
PINNs on two physically relevant transfer learning tasks and show that our methods
provide significant computational speedups in comparison to standard PINNs
trained from scratch.

1 Introduction

Differential equations are used to describe a plethora of phenomena in the physical sciences but
most cannot be solved analytically. Traditionally, numerical methods have been used to approximate
solutions to differential equations. Recently, Physics-Informed Neural Networks (PINNs) have
emerged as an attractive alternative offering several compelling advantages. In particular, PINNs:
provide solutions that are in closed form, offer a more accurate interpolation scheme [7], are more
robust to the “curse of dimensionality” [4, 5, 13, 14], and do not accumulate numerical errors [6, 11].

PINNs are typically trained to solve only a single configuration of a given system (e.g., a single initial
condition or set of system parameters) at once, making their practical use computationally inefficient.
More recently, it was shown that one-shot transfer learning can be used to obtain accurate solutions
to linear systems of ordinary differential equations (ODEs) and partial differential equations (PDEs),
thereby eliminating the need to train the network from scratch for a new linear system [3, 9].

In this work, we build upon [3] by proposing a method that can be applied to non-linear systems.
This method consists of two phases. First, we train a base neural network with multiple output
heads, solving the system for a range of different configurations (e.g., initial conditions or potentials).
We thus learn a representative basis that captures the underlying dynamics. Second, we freeze the
weights of the base network and fine-tune new linear heads on a secondary transfer learning task.
In doing so, we adapt the pre-trained base from one task to another and cut computational costs
significantly. We demonstrate the efficacy of our approach using a system of non-linear ODEs that

Machine Learning and the Physical Sciences workshop, NeurIPS 2022.



describes the trajectory of a particle through a weak random potential and can be used to model a
universal phenomenon called branched flow [2, 12].1

2 Background

2.1 PINN Models

This work uses PINNs that are trained in an unsupervised manner, as detailed below. We compare the
performance achieved by feed forward neural networks (FFNN) and GAN models.

FFNN: The standard unsupervised neural network approach was introduced by Lagaris et al. [7] and
can be used to solve differential equations of the form

L (u(t,x)) = 0, (1)
where x = (x1, . . . , xn), u : Rn+1 → R and L is a differential operator. During training, we sample
(t,x) from the domain of the equation D and use this vector as input to a FFNN, which outputs the
neural solution uθ(t,x). We re-parametrise this output into ũθ(t,x) to satisfy initial and boundary
conditions exactly. Using automatic differentiation, we can compute the derivatives of this output
with respect to each of the independent variables and build the loss by summing the squared residual
over M training points,

1

M

∑
(t,x)∈D

L (ũθ(t,x))
2
. (2)

Note that if the network ũθ perfectly satisfies Equation 1, then Equation 2 will be zero.

DEQGAN: Bullwinkel et al. [1] noted that there is no theoretical reason to use the L2 norm of the
residuals over any other loss function and proposed DEQGAN, which extends the FFNN method
to GANs and can be thought of as “learning the loss function.” Rather than computing a loss
over the equation residuals, DEQGAN labels these vectors “fake” data samples and zero-centered
Gaussian noise as “real” data samples. As the discriminator gets better at classifying these samples,
the generator ũθ is forced to propose solutions such that the equation residuals are increasingly
indistinguishable from a vector of zeros, thereby approximating the solution to the differential
equation.

2.2 Transfer Learning with Multi-Head PINNs

Figure 1: Multi-head PINN architecture. Each
output head hl is responsible for generating the
solution to the lth initial condition.

Figure 1 illustrates the multi-head architecture
that we apply to FFNN and DEQGAN models to
perform transfer learning. The output of the base
neural network is passed to heads h1, ..., hL,
each of which corresponds to the solution to
the system at a particular initial condition. Im-
portantly, this architecture can be used to apply
transfer learning to non-linear problems; in this
work, we consider one such system of ODEs
that is used to model particles moving through
a weak random potential.

Transfer learning with multi-head PINNs is per-
formed in two stages. First, we train the multi-
head model on a given set of initial conditions
until convergence. Next, we freeze the weights
of the base network and fine-tune only the out-
put heads on a second set of initial conditions. As detailed below, we use this procedure to perform
two transfer learning tasks: 1) Initial Condition Transfer, which involves fine-tuning the heads on
initial conditions that were not used to train the base. 2) Potential Transfer Learning, an even more
challenging task that allows us to obtain solutions for new initial conditions and a different potential
than the one used to train the base. Our results on these tasks suggest that the base is able to learn
highly general properties of the system.

1All code is publicly available at https://github.com/RaphaelPellegrin/Transfer-Learning-with-PINNs-for-
Efficient-Simulation-of-Branched-Flows.git.

2



3 Experimental Results

3.1 Branched Flow

Stochastic branched flow is a universal wave phenomenon that occurs when waves propagate in
random environments. Branching has been observed in tsunami waves [2], electronic flows in
graphene [12], and electromagnetic waves in gravitational fields [8]. We can model a two dimensional
branched flow by considering a particle with position x = (x, y) and velocity p = (px, py), both
functions of time t, traveling through a weak random potential V (x, y). With the Hamiltonian
H(x,p) = ||p||22/2+V (x) we obtain Hamilton’s equations, given by the following system of ODEs

ẋ(t) = px(t)

ẏ(t) = py(t)

ṗx(t) = −∂V (x(t), y(t))

∂x

ṗy(t) = −∂V (x(t), y(t))

∂y
,

(3)

For a plane wave, the initial conditions at t = 0 can be chosen as (x(0), y(0), px(0), py(0)) =
(0, y(0), 1, 0) [12].

We build random potentials by summing K randomly distributed Gaussian functions with covariance
matrix σ2I2 ∈ R2×2 and means µi ∈ R2, i = 1, . . . ,K, and scaling the result by −A, where
A ∈ R+, as in [12]. That is,

V (x) = − A

2πσ2

K∑
i=1

exp

(
− 1

2πσ2
||x− µi||22

)
. (4)

In the experiments presented below, we use K = 10, A = 0.1, σ = 0.1.

(a) Initial Condition Transfer (b) Potential Transfer Learning

Figure 2: Particle trajectories through weak potentials generated by FFNN models. Black lines
correspond to the 11 initial conditions used for base training, while blue lines show the solutions
obtained for 100 evenly spaced initial conditions via transfer learning after freezing the base. The
color bars indicate the value of the potential.

3.2 Details for Hamilton’s Equations

For both the FFNN and DEQGAN models, we use networks with a base consisting of 5 hidden layers
and 40 nodes. We then use L linear layers for the heads. Each head is responsible for the solution to
one ray, i.e., one initial condition zl(0) = (0, yl(0), 1, 0), where l = 1, . . . , L, and has four outputs
corresponding to x, y, px and py. For head l, we denote the outputs as ul,1, ul,2, ul,3 and ul,4. We
use the initial value re-parameterization proposed by Mattheakis et al. [10]

ũl,i(t) = [zl(0)]i +
(
1− e−t

)
ul,i(t), l = 1, . . . , L; i = 1, . . . , 4 (5)

which forces the proposed solution to be exactly zl(0) when t = 0 and decays this constraint
exponentially in t.

3



(a) FFNN (b) DEQGAN

Figure 3: Epochs vs. L2 norm of the equation residuals for single-head (classical), multi-head (base
training) and single-head (Initial Condition Transfer) runs using FFNN and DEQGAN models. The
multi-head model losses are computed by averaging over the 11 heads.

Table 1: Comparison between the computational efficiency (measured in epochs/sec) of training
classical single-head PINNs and performing Initial Condition Transfer for FFNN and DEQGAN.

Epochs per second

Single-Head (Classical) Multi-Head (Base) Single-Head (Transfer)

FFNN 35.27 4.13 42.34
DEQGAN 8.66 1.77 17.09

3.3 Transfer Learning Results

Our first transfer learning task, Initial Condition Transfer, allows us to efficiently obtain solutions
to the system for many initial conditions. We used multi-head models to train the base networks
on L = 11 initial conditions yl(0) = 0.0, 0.1, . . . , 1.0 and performed single-head transfer learning
on 100 evenly-spaced initial conditions in [0, 1] while keeping the potential fixed. All experiments
were performed on a Microsoft Surface laptop with Intel i7 CPU. Figure 2a shows the ray trajectory
solutions corresponding to the initial conditions used for base training (black) and transfer learning
(blue) obtained with the FFNN model. These trajectories also illustrate branched flows.

In Figure 3, we compare the losses achieved by the FFNN and DEQGAN models during base training
and transfer learning. We also show the residuals for classical models that do not leverage transfer
learning. Notably, we see that single-head models that use transfer learning converge more rapidly
than those trained from scratch. Further, Table 1 shows that each epoch of transfer learning (bold) is
also significantly faster. This is to be expected because transfer learning involves only fine-tuning
linear heads, rather than training an entire base network.

Our second transfer learning task, Potential Transfer Learning, utilizes the same pre-trained base
described above. This task, however, changes not only the initial conditions, but also the potential
(Equation 4). More specifically, we constructed a new potential by randomly sampling ten new
Gaussian means. To avoid significantly altering the statistical properties of the system, we used the
same values of σ and A. Figure 2b visualizes the ray trajectories obtained using this method and
suggests that the multi-head models are, indeed, able to learn highly general bases for the system.

4 Conclusion

In this paper, we propose a multi-head PINN architecture and a framework for performing transfer
learning with non-linear systems of differential equations. In particular, we simulate branched flows
with Hamilton’s equations and demonstrate that our method significantly reduces the computational
cost of obtaining solutions to many initial conditions in comparison to FFNN and GAN-based models
trained from scratch, without sacrificing accuracy. Finally, we show that base networks trained using
our method can transfer to new initial conditions and new potentials at the same time, indicating that
our method is able to learn highly general statistical properties of the system.

4



5 Broader Impact

This paper presents techniques that we hope will increase the utility of PINNs in real-world applica-
tions. In particular, the transfer learning procedure explored in this work trains a base neural network
on different configurations of the system of equations, thereby forcing the network to learn general
properties of the solutions and providing possible insights into the underlying physical problem.
Beyond computational speedups, we hope that this contributes to broader efforts within the research
community to make PINNs more interpretable, and ultimately more widely adopted. We believe that
future work focused on the theoretical foundations of PINNs will help cement these models as a third
pillar within the study of differential equations, alongside analytical and numerical methods.

References
[1] Bullwinkel, B., Randle, D., Protopapas, P., & Sondak, D. (2022). Deqgan: Learning the loss

function for pinns with generative adversarial networks. arXiv preprint arXiv:2209.07081.

[2] Degueldre, H., Metzger, J. J., Geisel, T., & Fleischmann, R. (2016). Random focusing of tsunami
waves. Nature Physics, 12(3), 259–262.

[3] Desai, S., Mattheakis, M., Joy, H., Protopapas, P., & Roberts, S. (2021). One-shot transfer
learning of physics-informed neural networks. arXiv preprint arXiv:2110.11286.

[4] Grohs, P., Hornung, F., Jentzen, A., & Von Wurstemberger, P. (2018). A proof that artificial neural
networks overcome the curse of dimensionality in the numerical approximation of black-scholes
partial differential equations. arXiv preprint arXiv:1809.02362.

[5] Han, J., Jentzen, A., & E, W. (2018). Solving high-dimensional partial differential equations
using deep learning. Proceedings of the National Academy of Sciences, 115(34), 8505–8510.

[6] Jin, H., Mattheakis, M., & Protopapas, P. (2020). Unsupervised neural networks for quantum
eigenvalue problems. arXiv preprint arXiv:2010.05075.

[7] Lagaris, I. E., Likas, A., & Papageorgiou, D. G. (1998). Neural network methods for boundary
value problems defined in arbitrarily shaped domains. arXiv preprint cs/9812003.

[8] Loutsenko, I. (2018). On the role of caustics in solar gravitational lens imaging. Progress of
Theoretical and Experimental Physics, 2018(12), 123A02.

[9] Mattheakis, M., Joy, H., & Protopapas, P. (2021). Unsupervised reservoir computing for solving
ordinary differential equations. arXiv preprint arXiv:2108.11417.

[10] Mattheakis, M., Protopapas, P., Sondak, D., Di Giovanni, M., & Kaxiras, E. (2019). Physical
symmetries embedded in neural networks. arXiv preprint arXiv:1904.08991.

[11] Mattheakis, M., Sondak, D., Dogra, A. S., & Protopapas, P. (2022). Hamiltonian neural
networks for solving equations of motion. Phys. Rev. E, 105, 065305.

[12] Mattheakis, M., Tsironis, G., & Kaxiras, E. (2018). Emergence and dynamical properties of
stochastic branching in the electronic flows of disordered dirac solids. EPL (Europhysics Letters),
122(2), 27003.

[13] Raissi, M. (2018). Forward-backward stochastic neural networks: Deep learning of high-
dimensional partial differential equations. arXiv preprint arXiv:1804.07010.

[14] Sirignano, J. & Spiliopoulos, K. (2018). Dgm: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375, 1339–1364.

5



Checklist

1. For all authors...
(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s

contributions and scope? [Yes]
(b) Did you describe the limitations of your work? [Yes]
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main experi-

mental results (either in the supplemental material or as a URL)? [Yes]
(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they

were chosen)? [Yes]
(c) Did you report error bars (e.g., with respect to the random seed after running experi-

ments multiple times)? [N/A]
(d) Did you include the total amount of compute and the type of resources used (e.g., type

of GPUs, internal cluster, or cloud provider)? [Yes]
4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

6


	Introduction
	Background
	PINN Models
	Transfer Learning with Multi-Head PINNs

	Experimental Results
	Branched Flow
	Details for Hamilton's Equations
	Transfer Learning Results

	Conclusion
	Broader Impact

