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Abstract

Cosmological shock waves are essential to understanding the formation of cos-
mological structures. To study them, scientists run computationally expensive
high-resolution 3D hydrodynamic simulations. Interpreting the simulation results
is challenging because the resulting data sets are enormous, and the shock wave
surfaces are hard to separate and classify due to their complex morphologies and
multiple shock fronts intersecting. We introduce a novel pipeline, VIRGO, com-
bining physical motivation, scalability, and probabilistic robustness to tackle this
unsolved unsupervised classification problem. To this end, we employ kernel prin-
cipal component analysis with low-rank matrix approximations to denoise data sets
of shocked particles and create labeled subsets. We perform supervised classifica-
tion to recover full data resolution with stochastic variational deep kernel learning.
We evaluate on three state-of-the-art data sets with varying complexity and achieve
good results. The proposed pipeline runs automatically, has few hyperparameters,
and performs well on all tested data sets. Our results are promising for large-scale
applications, and we highlight now enabled future scientific work.

1 Introduction

Cosmological structures form by gravitationally accreting mass from their surroundings [e.g. 3, 44,
29]. As galaxies fall into clusters, they dissipate their energy in the form of shock waves in the diffuse
gas between them, labeled as the intra-cluster medium (ICM) [e.g. 6, 35, 36, 52, 53, 38, 47]. In these
systems, the evolution of shock waves is the primary driver setting the global physical properties
[e.g. 41, 48, 49, 20, 54, 46, 10]. These shock waves are defined as discontinuities in density and
temperature, propagating through the ICM. They are powerful accelerators of relativistic particles,
which we can observe as synchrotron emission sources from merging galaxy clusters [51]. Modeling
these cosmological systems with state-of-the-art simulations requires modern supercomputers, as
there is large degeneracy in the possible geometry. The produced data sets contain up to O(1010)
particles, which we need to interpret to make conclusions about formation scenarios. However,
shock wave structures in galaxy clusters form highly complex shapes and surfaces (see Fig. 1), and
collisions between them lead to a superposition of different shock waves with overlapping geometries.
From first principles, we can not make a simple, prior connection between in-falling substructures
and shock wave surfaces. This setup poses a complex unsupervised classification problem for an
unknown number of target classes in which we must find, separate, and label coherent shock wave
structures in simulated data. To this end, we propose a novel, physically motivated, and fully scalable
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Figure 1: Simulated data set (CLUSTHD2) containing all particles with a detected shock in the
velocity range Ms ∈ [1, 5]. a) Full simulation domain. b) Manual selection showing the complex
shock structure of multiple ongoing merger shocks. We want to determine all shock surface particles
as separate labeled groups and remove non-shock wave particles. c) Same as b), but rotated by 45◦.

machine learning pipeline to solve the outlined problem. We separate the unsupervised classification
task by creating labels for a random subset of each data set and then training a classifier on that
subset. For pre-processing, we exploit the non-stationarity of the problem with kernel principal
component analysis (kernel PCA) [18, 40] and use Gaussian mixture models (GMM) [1] to pre-clean
the data from unwanted non-shock wave particles. For the subset classification, we further use
physically motivated kernel functions with kernel PCA, Nyström approximation [9, 37] and employ
an agglomerative clustering (friends-of-friends (FoF) [5]) algorithm with an automatically set linking
length. Finally, we use the labeled subset to train a stochastic variational deep kernel learning
(SV-DKL, DKL) [14, 15, 56, 55] classifier to use our algorithm on the full data sets. For the first time,
we can tackle this previously unsolved problem with our described pipeline and guarantee scalability
for state-of-the-art and future data sets.

2 Background and Related Work

We utilize FoF and GMM for their flexibility and good scalability to large data sets [24]. The FoF
algorithm is commonly used in astrophysics, e.g., for structure identification [5, 7]. We use the for
physics applications attractive [22] kernel functions [39], as we can create physically motivated kernel
functions with interpretable parameters and consider information like, e.g., symmetry or local density
changes. For more flexible kernel functions, the authors of [56] introduced scalable deep kernel
learning (DKL) to utilize the adaptive basis functions of a neural network (NN). A deep kernel NN is
used as input for a base kernel of a Gaussian process [37] and their parameters are jointly trained.
The DKL approach was expanded by [55], introducing stochastic variational deep kernel learning
(SV-DKL). Gaussian processes have found applications in astrophysics [42, 50, 26, 23, 19, 25]. The
authors of [22] also suggest SV-DKL for large-scale physics simulation interpolation. There have been
analytical [43] and deep learning [27, 28] approaches to shock wave and supernovae identification.
Clustering algorithms are commonly used in astrophysics [5, 59, 11, 34, 33]. In comparison, SV-DKL
is the only approach offering Gaussian process non-parametric and statistical benefits, sufficient
scalability and flexibility of applied metrics to solve our problem. To the best of our knowledge, this
is the first application of DKL and SV-DKL to an astrophysical task. Previous work only hinted at
DKL applications [30]. Furthermore, we are not aware of any preceding work having solved this
unsupervised classification problem, in particular not with state-of-the-art resolution data sets.

3 Data Sets

We employ three data sets for the shock surface classification to gauge the flexibility of our pipeline
for increasing physical complexity and different scales. All data sets were generated with OPEN-
GADGET3[45, 2] (GNU). We name the data sets CLUSTHD (Fig. 1), CLUSTMHD and BOXMHD.
The first two are ultra-high-resolution (magneto) hydrodynamics simulations (MHD) of a single
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massive galaxy cluster (∼ 109 particles), and BOXMHD is a high-resolution simulation of a large
cosmological volume with many clusters (∼ 1010 particles), but at lower resolution 2. The magnetic
fields lead to additional motions perpendicular to the shock propagation and more patchy shock wave
surfaces. For BOXMHD, our problem scales from unsupervised classification of an unknown number
of target classes from a single cluster to the same for an unknown number of clusters. We reduce the
full data set of the simulation to only the parameters relevant for the actual shock surfaces. These are
the spatial positions x, the sonic Mach number Ms and the shock normal vector n̂s.

4 VIRGO Model Pipeline

We propose a new pipeline to solve the unsupervised classification of an unknown number of
cosmological shock waves in four separate steps:
1) For data pre-processing, we remove data points above a conservative Mach threshold (Ms ≤ 15)
and rescale the data set to a zero mean and unit variance. We only use the particle position x and shock
normal vector n̂s. Each particle therefore is a 6-dimensional vector q = (xx, xy, xz, n̂sx, n̂sy, n̂sz)

⊤.
2) The raw simulation output is noisy with non-shock wave particles and not centered, as is illustrated
in Fig. 1a. We use an RBF kernel with the Nyström approximation on the particle positions x for
kernel PCA. We use GMM in the feature space with expectation maximization to separate the actual
cluster of shock waves from non-shock wave particles by density estimation.
3) We construct a physically motivated composite kernel kV by adding two separate composite kernels
made up of Matérn- 52 kernels kM and linear kernels kL

k1(q,q
′) = kM(x,x′) · kL(x,x

′)

k2(q,q
′) = kM(x,x′) · kL(n̂s, n̂

′
s)

kV(q,q
′) = k1(q,q

′) + k2(q,q
′).

k1 creates a non-stationary kernel for spatial information, whereas k2 combines local spatial informa-
tion with shock normal directions of the particles. We combine kV with the Nyström approximation
and PCA, accepting a reduction of the data set to a random subset for computational limitations. The
resulting feature space enables separation with a fixed linking length β FoF algorithm. We estimate β
with the average n-next-neighbor distance in the resulting feature space.
4) We use this labeled subset to train an SV-DKL classifier. With the deep kernel, we gain a locally
adaptable similarity metric required for robust classification. The SV-DKL framework allows us to
achieve fast inference and good scalability, as we are not limited by the size of the data set.
Our approach is distinctly scalable, as we can downsize the data set at each step only to recover
full resolution with the SV-DKL at the end. We collect our analysis and tools in a Python software
package to be available for future work, called VIRGO3. The package utilizes already implemented
features of PyTorch [31] (BSD), GPyTorch [12] (MIT), scikit-learn [32] (BSD) and pyfof [13] (MIT).

5 Experiments

We evaluate our pipeline on the data sets from Sec. 34. Different time steps of one simulation,
indicated by an index, are quasi-independent data sets to be solved due to morphing structures and
changing number of target classes. As there exist no labeled data sets, we must verify the results
visually by the coherence of the shock wave surface classification and the removal of non-shock
particles. In our studies, we observe that any other approach visibly over- or under-segments the shock
waves. We show the denoising and centering process representative for CLUSTHD2 in Fig. 2. Our
approach accurately separates the dense cluster region from the general simulation output. Should
more structures be present, we increase the number of GMM components and obtain reliable results
for all tested data sets. We classify the denoised result as described in step 3) while reducing the data
set in size to a random subset. However, we recover full resolution with the SV-DKL classifier trained
on the labeled subset. This final classification does not depend on the choice of the random subset in

2You can find more information, as well as a movie of some of the simulations at http://www.magneticum.
org/complements.html#Compass

3Variational Inference package for unsupeRvised classification of (inter-)Galactic shOck waves. The source
code is publicly available at https://github.com/maxlampe/virgo (MIT)

4Used hardware, training and model parameters are stated in the appendix.
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Figure 2: Denoising process of Sec. 4 step 2) for CLUSTHD2 data set from Fig. 1. a) GMM fitted
in kernel-PCA space with low-density noise (gray) and high-density cluster component (blue). b)
Labeled data from a), but in physical space. c) Resulting denoised data set for further analysis.

x  [
h

1 cM
pc]

2
1

0
1

2
3y  [h 1cMpc]

3 2 1 0 1 2

z  [h
1cM

pc]

2

1

0

1

2

3

a)

x  [h 1cMpc]

210123

y  [h
1cMpc]

3
2

1
0

1
2

z  [h
1cM

pc]
2

1

0

1

2

3

b)

x  [
h

1 cM
pc]

3
2

1
0

1
2

3y  [h 1cMpc]

3 2 1 0 1 2 3

z  [h
1cM

pc]

3

2

1

0

1

2

3

c)

Figure 3: Full resolution reconstruction of CLUSTHD2 with the SV-DKL classification. This result
is the final VIRGO output for the raw input in Fig. 1. a) Labeled data set with SV-DKL classifier, step
4) in Sec. 4. b) same as a), but rotated by 45◦. c) Same as a), but with non-shock wave particles.

the previous step. Fig. 3 shows the reconstructed and labeled data set of CLUSTHD2. The complex
morphology of the shock waves and its substructures are restored and correctly labelled. We compare
the SV-DKL against a k-nearest-neighbor (k-NN, k = 10) classifier and a fully connected NN (like
deep kernel NN) in Tab. 1. The SV-DKL outperforms the other methods in accuracy. However, k-NN
achieves decent accuracy, and we recommend it as a cost-effective replacement for online applications.
VIRGO also successfully separates and labels shock waves on the more complex BOXMHD data set.
We repeat step 2) for this data set twice to deal with the multiple cluster objects. This additional step
is required to single out dense objects and do single cluster analysis. In addition, VIRGO shows signs
of generalization, as we used the trained classifier from the labeled subset of CLUSTHD2 on the full
data set of CLUSTHD3 and obtained good results as well. However, this requires the same amount of
target shock wave classes. Overall, VIRGO solves the outlined classification problem of cosmological
shock waves and delivers robust results on all tested data sets.

Table 1: Comparing average test accuracies on the labeled subsets of the data after step 3) in Sec. 4
for different methods on different data sets for ten independent runs.

Method CLUSTHD1 CLUSTHD2 CLUSTHD3 CLUSTMHD1 BOXMHD1

k-NN 97.10± 0.34 96.61± 0.32 97.19± 0.30 96.57± 0.39 96.69± 0.48
FC-NN 95.33± 1.32 95.51± 0.84 96.63± 0.41 96.19± 0.50 95.05± 0.69

SV-DKL 97.57 ± 0.54 97.00 ± 0.49 98.36 ± 0.18 98.08 ± 0.16 98.02 ± 0.37
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6 Discussion and Limitations

We demonstrated the capability of VIRGO to capture the irregular shapes of shock wave surfaces. For
future work, we propose using VIRGO to improve large-scale galaxy-cluster simulations by increasing
the efficiency of particle injections at shock structures [e.g. 8, 58, 57, 4] or to study supernovae
remnants [17]. We determine the linking length estimator from step 3) to be most prone to error and
limitation. However, our data sets are insufficient to construct an estimator for this hyper-parameter
without overfitting. Also, labeling errors in step 3) will be propagated by the SV-DKL. The Gaussian
process might correct minor errors, but this will not fix larger misclassifications. For applications to
more complex data sets, VIRGO should be combined with a better structure finder and a criterion for
actual shock wave detection. Future work should verify the robustness of our chosen hyper-parameters
in a broader set of simulated data, as this might pose a challenge for users. We also propose training
the same DKL over different data sets with SV-DKL to yield a more generalizable solution. The DKL
could be combined with PCA and k-NN to achieve better computational scalability, classification
for an unknown number of shock waves in a cluster, and robustness regarding the linking length
hyper-parameter, as the pre-trained DKL could even replace or at least improve the subset labeling of
step 2).

We introduced a novel, physically motivated, and scalable pipeline. The unsupervised classification
problem of cosmological shock waves was successfully solved for the first time. We hope our work
inspires other astrophysics and physical sciences applications with (SV)DKL.

7 General Impact Statement

We believe our proposed pipeline will increase progress in cosmology simulation studies and lead
to new applications in astrophysics. While our approach is unique and distinct, it is limited to
specific synthetic data sets which are generated and therefore don’t necessitate privacy or fairness
considerations. The data sets we are using do not contain any personally identifiable information or
offensive content. Hence, we think a broader impact discussion is not applicable. Furthermore, given
our specific data structure (spatial points and shock normal vectors), we see no possible applications
outside natural sciences and for other purposes, even with malicious intent. We cannot outline any
societal impact beyond scientific interpretations of cosmological structure formation.
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(c) Did you discuss any potential negative societal impacts of your work? [Yes] See Sec. 7
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A Appendix

The deep kernel NN is adjusted to our problem regarding the accuracy and a minimal number of
parameters and is a fully connected NN with ReLU activation functions after each layer. We use an
RBF kernel for the additive base kernels. The inducing points and training parameters are set up as in
[55] and [16], unless stated otherwise below. We use a standard softmax likelihood. We optimized all
parameters in steps 1) to 3) from Sec. 4 to run all experiments on a Linux machine with two 2.4 GHz
CPU cores and 8 GB RAM to highlight its efficiency. However, step 4) required a GPU with 16 GB
RAM. We list any distinct parameters for our pipeline and its training: For the denoising step 2), we
use an RBF kernel with the Nyström approximation m = 100, PCA with k = 5 components, and
GMM with 2 or 5 components, depending on the data set. The physically motivated kernel kV of step
3) is used with Nyström approximation m = 500, PCA with k = 6 components, and we estimate the
FoF linking length β as the average 20-next-neighbor distance. The deep kernel NN is set up with six
input features, nh = 1 hidden layer of size 20, nf = 10 output features, and without pre-training.
We trained the SV-DKL of step 4) over 20 epochs, with a batch size of 1024, a grid of 64 inducing
points, an overall learning rate of α = 0.1, a learning rate scheduler decreasing it by 0.1 after 50 and
75% of the training time, decreased learning rate for the Gaussian process parameters αGP = α/100,
L2 regularization with weight decay of 10−4, and an ADAM optimizer (β1 = 0.9, β2 = 0.999) [21].
We employed an 80/10/10 spit between training, validation and test sets.
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