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Abstract

Image coaddition is of critical importance to observational astronomy. This fam-
ily of methods consisting of several processing steps such as image registration,
resampling, deconvolution, and artifact removal is used to combine images into a
single higher-quality image. An alternative to these methods that are built upon
vectorized operations is the representation of an image function as a neural net-
work, which has had considerable success in machine learning image processing
applications. We propose a deep learning method employing gradient-based planar
alignment with Bundle-Adjusting Radiance Fields (BARF) to combine, de-noise,
and remove obstructions from observations of cosmological objects at different
resolutions, seeing, and noise levels – tasks not currently possible within a single
process in astronomy. We test our algorithm on artificial images of star clusters,
demonstrating powerful artifact removal and de-noising.

1 Introduction

Combining images of celestial objects is a common and important task performed by astronomers.
The goal of image coaddition is to resample the images, which corrects for any warping that occurred
during the observation, and add them to produce a single deeper, more meaningful representation
(AlSayyad [1]). The first task is therefore image registration, which is usually carried out by mapping
the observed locations of stars to their locations in a common reference, followed by resampling to
map all given images into that reference coordinate system. Thereafter, coaddition involves direct
linear combination, point spread function (PSF) matching, or non-linear weighting.

Image coaddition can serve additional purposes besides the effective reduction of noise, in particular
aiding deconvolution, i.e. the deblurring operation that reduces the effects of telescope optics and
Earth’s atmosphere. However, deconvolution of noisy images is an ill-defined operation (Starck et al.
[10]). As a result, astronomers need to adopt a coaddition scheme in which there exists a trade-off
between improvements in image sharpness and effective noise level. Advanced coaddition methods
such as likelihood coaddition, which calculates the joint likelihood of models of the true sky, or
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Figure 1: ArtPop Generated Low Resolution and High Resolution Images

decorrelated coaddition attempt to find that optimal trade-off but are computationally expensive
and require specific conditions to operate (Bosch [2]). Another method, Kaiser coaddition, is less
expensive but has strict demands for use: 1) noise in the images is uncorrelated and white, 2) the
PSFs are spatially constant and 3) no pixels or boundaries are missing in the images (Kaiser [5]). In
summary, coaddition is a longstanding objective in astronomy for which formally optimal solutions
exist but with the caveat of needing idealized conditions.

The situation becomes even more complex when the goal becomes to combine images from different
instruments. This task is becoming of increasing interest as several large astronomical surveys
are being planned in order to observe large overlapping regions of cosmological scenes. Such an
undertaking would benefit from large-scale image coaddition (Rhodes et al. [9]). Well-documented
solutions exist to successfully combine images of different resolutions, but their common trade-off is
accuracy of the resampled image versus computational efficiency.

In order to address the shortcomings of current image coaddition methods, we present a single, more
streamlined image processing technique for all of the tasks listed above: Bundle-Adjusting Radiance
Fields (BARF). BARF (Lin et al. [6]) builds off of the 3D computer vision scene reconstruction
method Neural Radiance Fields (NeRF) (Mildenhall et al. [8]). BARF’s key difference to common
techniques in astronomy is that it represents the image not as a regular collection of pixels but as a
neural network that maps sky positions to light intensity. The network can be trained robustly through
the combination of images even if their respective warps are initially unknown. In this work we focus
on the removal of artifacts when coadding images with different resolutions, seeing, and noise levels
in order to show how planar alignment can perform coaddition, deconvolution, and artifact masking.
Our code is available at https://github.com/harlanhutton/AstroNeRF.

2 Data

The python package ArtPop allows us to create artificially-rendered star clusters by manipulating
object characteristics, instrument properties and capture quality (Greco and Danieli [3]). Outputs are
either black and white, replicating a single bandpass filter, or colorized, combining multiple telescope
filters. The process of generating an artificial image is broken into 3 steps: defining the source object,
creating the imager, and observing. The source represents the star cluster, the imager represents the
hypothetical telescope, and the observation is the act of using the imager to capture the source.

By manipulating the ArtPop parameters, we can mimic a single star cluster that has been captured
from different telescopes under various environmental conditions. Perturbing the noise parameter
allows us to produce a dataset with various levels of sky noise. To vary seeing levels, we choose
different full-width half-maximum (FWHM) values for the PSF in the observation step. To vary
resolutions, we choose different values of pixel scale.

Additionally, we simulate the complications in practical astronomical imaging, namely “warps”, i.e.
the non-linear mapping between image coordinates and sky coordinates due to e.g. the flexing of
telescope, and partial obstructions from artifacts such as ghost or satellite trails. Warps are applied to
crops of the original image, and obstructions are added to the warped image.
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Figure 2: Diagram to show the workflow of planar alignment with BARF. The ArtPop images are
generated. The images are cropped, ground truth warps are generated,and obstructions are added.
The xy-coordinates of the ground truth warps act as input to the neural network which learns the
warp parameters for each crop and the entire image representation used to make the final prediction.

3 Approach

The crucial change we make to BARF in order to adapt the algorithm to astronomy is to learn a single
representation from a set of different input images rather than just one. Building off of Lin et al. [6],
we seek to learn both an image representation and the warp parameters for each image. The key idea
is to represent the image function f : IR2 → IRB, which maps from the 2D position x to the source
intensity in B bands (e.g. B = 3 for RGB values), by a neural network. The objective function is

minp
(1,...,M)

,Θ

M∑
i=1

∑
x

|f(W(x;p); Θ)− Ii(x)|, (1)

where p ∈ IR8 are the warp parameters, W is the warp transformation, I is the image, Θ is the
network parameters, and M is the number of images. We use the L1 loss to better account for the
strong outliers random obstructions can cause. Through the optimization of Equation 1, we find the
homography warp parameter for each patch while also learning the neural representation of the entire
predicted image at arbitrary resolution.

Whereas Lin et al. [6] cropped a single ground truth image into multiple patches and applied warp to
those patches, we crop different ArtPop images of the same star cluster. Each patch is then warped
using translation and homography. Homography is parameterized with sl(3) Lie algebra which allows
for a fixed scale ensuring only 8 free parameters are estimated. We justify using sl(3) as it accounts
for when the observed plane does not strictly pass through the optical center of the camera (Mei et al.
[7]). To each warped crop we then add random obstructions to demonstrate simultaneous coaddition
and artifact removal.

4 Experiment

Using the same star cluster, we create a dataset of nine 500× 500 pixel images randomly generated at
high resolution or low resolution. Once the training images are created, we add randomly-generated
obstructions that vary in shape, size, color, and location. The goal of adding these exaggerated
obstructions is to demonstrate how planar alignment with BARF removes them from the final
prediction. For each input image we generate a 300 × 300 cropped pixel patch with homography
perturbation. All patches are initialized at the center and the first patch’s warp is the identity so that
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Figure 3: Final Prediction

the final prediction can implicitly align with the ground truth. We visualize the added obstructions
and ground truth warps for each image in Figure 2.

To minimize the objective function and find the warp parameter for each patch and the neural
representation of the entire image, we use the same network as Lin et al. [6]: a simple Multi-Layer
Perceptron with a ReLU activation function and four 256-dimensional hidden units trained for 5000
iterations. We use the Adam optimizer with a learning rate of 0.001 for both the neural image
representation and the warp parameters and a weight decay of 1× 10−8 (Joseph et al. [4]).

5 Results

We visualize the final prediction image in Figure 3. We find that planar alignment with BARF
successfully removes obstructions and reduces noise while learning the neural representation of the
scene, even with input images at various resolutions, seeing, and noise levels. The prediction quality
remains high even for a small batch size of 9.

In this context of coaddition with input images greatly varying in resolution, we consider the final
prediction deconvolved overall and not just when compared to low quality images. We argue it is truly
deconvolved because it corrects the systematic error of blur in the smaller features in the collective
images. Although the final output might not be the optimal highest quality image of the stellar object,
it still manages to preserve important information from each input image while reducing partial blur
and removing obstructions when compiled.

As this experiment serves primarily as a demonstration of the capabilities of BARF, we do not list
specific metrics of success, as they would inherently depend on the scientific purpose of the image
coaddition. Instead, we demonstrate and focus on the visual quality of the coadded images.

6 Conclusion

We present planar alignment with BARF as a novel method to coadd, de-convolve, and remove
obstructions from astronomical images, even when taken at different resolutions.

This deep learning strategy is simple and flexible when compared to current image processing methods
in astronomy. Applying a neural network to implicit image position representations, instead of vector
representations, generates an image function that has promising applications for further streamlining
of current image processing techniques. Because coaddition, deconvolution, and artifact masking
are longstanding objectives in astronomy with considerable research done to optimize each, we do
not introduce planar alignment as a strategy to outperform any singular step in image processing.
Instead, we show it as an alternate route to solving the multi-resolution problem that provides benefits
of flexibility and simplicity.

One current shortcoming of this method is how prediction quality breaks down towards the edges of
the image, as there is less information due to the cropped patches. Prediction quality also decreases
as input image FWHM and noise levels are raised. However, even with a random obstruction in every
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input image, the output image shows the reconstructed star cluster with little trace of obstructions.
Additionally, there is no current metric other than visual observation to compare performance to
traditional methods. It is important to note that the scope of this paper only focuses on improvement
of visual quality. Although outside the scope of this paper, we welcome suggestions for performance
metrics of BARF that are meaningful in astronomy.

Future work aims to quantitatively compare the performance of planar alignment with BARF to
traditional astronomical methods of image processing in terms of cost-effectiveness, luminosity, and
overall scene reconstruction. Although an early experimentation, planar alignment with BARF shows
that computer vision methods like homography estimation could prove to be the successful route
for image processing. Increased technological advancements in telescope imaging may warrant the
need for large-scale automation robust to noisy data that a traditional machine learning homography
estimation method like planar alignment can provide.

Broader Impact Statement

In this paper we introduce BARF as a potential strategy to address the shortcomings of traditional
image coaddition methods in astronomy. A neural approach could become a better, more efficient
method for image coaddition in terms of simplicity and flexibility. This would allow astronomers
to produce high-quality coadded images faster, with less data, and with lower quality data than
traditional methods allow. Not only would this benefit the astronomy community, but also society as
a whole, as it would aid in the technological advancement of space exploration. Additionally, this
method is not limited to the realm of astronomical coaddition. A future avenue to explore would be
the application of homography estimation methods like BARF to the coaddition of satellite images
of Earth. The flexibility of the imaging function could be more robust than current methods to the
removal of smoke or clouds when reconstructing scenes of landscapes.
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