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Abstract

Understanding how feature learning affects generalization is among the foremost
goals of modern deep learning theory. Here, we use the replica method from
the statistical mechanics of disordered systems to study how the ability to learn
representations affects the generalization performance of a simple class of models:
deep Bayesian linear neural networks trained on unstructured Gaussian data. By
comparing deep random feature models to deep networks in which all layers
are trained, we provide a detailed characterization of the interplay between width,
depth, data density, and prior mismatch. Random feature models can have particular
widths that are optimal for generalization at a given data density, while making
neural networks as wide or as narrow as possible is always optimal. Moreover, we
show that the leading-order correction to the kernel-limit learning curve cannot
distinguish between random feature models and deep networks in which all layers
are trained. Taken together, our findings begin to elucidate how architectural details
affect generalization performance in this simple class of deep regression models.

1 Introduction

Deep neural networks (NNs) display a rich and often-perplexing spectrum of generalization behaviors.
Highly overparameterized NNs may possess the expressivity to fit random noise, yet in practice
can still generalize well to unseen data [1, 2]. The ability of NNs to flexibly learn features from
data is widely believed to be a critical contributor to their practical success [1–4], but the precise
contributions of feature learning to their generalization behavior remain incompletely understood
[1–10].

In recent years, intensive theoretical work has begun to elucidate the properties of deep networks in the
limit of infinite hidden layer width, where inference in deep networks is equivalent to kernel regression
or classification [6, 11–13, 13–16]. This correspondence has enabled detailed characterizations of
inference at infinite width in both maximum-likelihood and fully Bayesian settings, providing new
insights into the inductive biases that allow deep networks to overfit benignly [17–27].

Yet, understanding inference in the kernel limit is not sufficient, because kernel descriptions cannot
capture feature learning [3, 7–9, 28]. As a result, a growing number of recent works have aimed
to perturbatively study the behavior of networks near the kernel limit, with the hope that leading-
order corrections to the large-width behavior might elucidate how width and depth affect inference
[4, 29–36].

However, previous studies of Bayesian neural network generalization near the kernel limit have
not clearly differentiated the effect of width on feature learning from its other potential effects on
inference. Concretely, it is not clear whether potential improvements in generalization afforded by
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Figure 1: Generalization in deep Bayesian linear random feature models and neural networks. Here,
we illustrate how representational flexibility eliminates the model-wise double descent that is present
in random feature models with fewer features than inputs. a. Generalization error as a function of
data density α = p/d and relative hidden layer width γ = n/d in a random feature model of input
dimension d and hidden layer width n trained on a dataset of p examples. When α and γ are less than
one, the generalization error diverges at α = γ. b. As in a, but for a network with all layers trained.
Representational flexibility eliminates the divergence at α = γ. c. As in a, but with noise-corrupted
training labels. Now, an additional divergence is visible when α = 1 and γ > 1. d. As in b, but with
noise-corrupted training labels. The generalization error diverges when α = 1.

the leading finite-width correction reflect the benefits of feature learning, or if a similar gain would
be observed in random feature models, where only the readout layer is trained. Here, we explore how
random and learned features affect generalization in the simplest class of Bayesian NNs—deep linear
models—when trained on unstructured, noisy data. By developing a detailed understanding of this
simple setting, one might hope to gain intuition that may prove useful in studying more complex
networks [30, 37–42].

We have recently studied the asymptotic generalization performance of deep linear Bayesian regres-
sion for data generated with an isotropic Gaussian covariate model [43]. Using the replica trick
[44–46], we compute learning curves for simple linear regression, deep linear Gaussian random
feature (RF) models, and deep linear NNs. Using alternative replica-free methods and numerical
simulation, we show that the predictions obtained under a replica-symmetric (RS) Ansatz are accurate
for all three model classes.

In the presence of label noise, both RF and NN models display sample-wise non-monotonicity, which
refer to as “double-descent," in their learning curves. As we work in a high-dimensional limit, this
non-monontonicity is of a particularly extreme form: the generalization error diverges at a particular
data density. If one introduces a bottleneck layer that is narrower than the input dimension, an
RF model will display model-wise double-descent behavior at fixed data density—or equivalently
sample-wise double-descent at fixed width—even in the absence of label noise, while an NN model
will not show this divergence. This distinct small-width behavior shows one advantage afforded by
the flexibility to learn features. We further analyze models of arbitrary depth perturbatively in the
limit in which the network depth and dataset size are small relative to the hidden layer widths. We
find that the leading order correction to the large-width behavior of RF and NN models is identical,
hence first-order perturbation theory for the generalization error cannot distinguish between random
and learned features. In total, our results provide new insight into how the generalization behavior of
deep Bayesian linear regression in high dimensions depends on architectural details. Moreover, they
shed light onto which qualitative features of generalization behavior can or cannot be captured by
low-order perturbative corrections [30].
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Figure 2: Optimal RF model architecture depends on target-prior mismatch. (a). Error across widths
for a single-hidden-layer RF model with prior variance σ2 = 1. (b). As in (a)., but for a single-
hidden-layer RF model with higher prior variance (σ2 = 4). Theoretical predictions for optimal
width are marked with dashed vertical lines for each α. (c). Error across depths for prior variance
σ2 = 1 and fixed width γ = 1.5 (d). Error across depths for prior variance σ2 = 4 and fixed width
γ = 1.5. Theoretical predictions for optimal depth are marked with dashed vertical lines for each α.

2 Results

We consider deep linear models g(x) = w⊤x/
√
d for an end-to-end weight vector w =

σU1 · · ·Uℓv/
√
n1 · · ·nℓ, where Ul ∈ Rnl×nl−1 and σ > 0 sets the predictor scale. The ob-

jective of our work is to compare RF models, in which the matrices Ul are fixed and random and only
the readout v is trained, with NNs, in which all parameters are trained. We fix isotropic Gaussian
priors (Ul)ij ∼ N (0, 1) and vj ∼ N (0, 1). We train these models on a dataset {(xµ, yµ)}pµ=1 gener-
ated by a noisy Gaussian covariate model, with xµ ∼ N (0, Id) and yµ = w⊤

∗ xµ/
√
d+ ξµ, where

∥w∗∥2 = d and ξµ ∼ N (0, η2). We introduce an isotropic Gaussian likelihood of variance 1/β,
and denote expectations with respect to the resulting Bayes posterior by ⟨·⟩. Using the non-rigorous
replica method from statistical physics [44–46], we compute the asymptotic zero-temperature average
generalization error ϵ = limβ→∞ limd,p,n1,...,nℓ→∞ ED⟨∥w − w∗∥2⟩/d in the proportional limit
with p/d → α and nl/d → γl, where ED denotes expectation over the random data and, for the
RF model, the random weights. The details of this calculation are lengthy and technical, and are
presented in [43].

For RF models, we obtain a closed-form expression for the learning curve at any depth. Letting
γmin = min{γ1, . . . , γℓ} be the minimum hidden layer width, we find that

ϵRF =


(1− α)

(
1 + σ2

∏ℓ
l=1

γl−α
γl

+
∑ℓ

l=1
α

γl−α

)
+
(

α
1−α +

∑ℓ
l=1

α
γl−α

)
η2, if α < min{1, γmin}

α 1−γmin
α−γmin

+ γmin
α−γmin

η2, if α > γmin and γmin < 1
1

α−1η
2, if α > 1 and γmin > 1.

(1)

The corresponding result ϵLR for simple linear regression can be obtained by setting ℓ = 0, which
recovers previous results [20, 47]. For a deep network, we find that

ϵNN = ϵLR +

{
z − σ2(1− α), if α < 1

0, if α > 1,
(2)

where z = z(α, σ2, η2, γ1, . . . , γℓ) is a non-negative real root of the polynomial

zℓ+1 = σ2(1− α)
∏ℓ

l=1

[
(γl − α)z/γl + α(1− α+ η2)/γl

]
. (3)

The detailed conditions on which root should be selected are given in [43]; this result is consistent
with that of a heuristic approximation by [35]. We note immediately that, in the absence of label
noise (η = 0), simple linear regression and NNs do not display double-descent, while RF models can
still display divergent generalization error if γmin < 1. This is illustrated in Figure 1.

At large widths γl → ∞, both ϵRF and ϵNN tend to ϵLR, reflecting the fact that the deep network does
not learn features in this limit [4, 13, 14, 16, 31, 33]. If σ2 < 1 + η2/(1− α), wider (and shallower)
RF and NN models always generalize better. If σ2 > 1 + η2/(1 − α), narrower (and deeper) NN
models always generalize better, while RF models have an optimal width and depth. We illustrate
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Figure 3: Generalization gap between two-layer RF and NN models as a function of hidden layer
width γmin. The details of the numerical experiments will be provided elsewhere.

optimal RF model architectures in Figure 2. Optimal network architecture therefore depends on the
match between the prior and target scales.

Solving the polynomial equation for ϵNN in order-by-order in α/γ, we recover the dataset average of
the leading-order perturbative correction to this limit we previously computed in [33]:

ϵNN = ϵLR + [(1− α)(1− σ2) + η2]

ℓ∑
l=1

α

γl
+O

(
α2

γ2

)
. (4)

However, upon expanding (1) one finds that the leading correction to ϵRF is identical, hence leading-
order perturbation theory cannot distinguish the effect of representational flexibility from other
finite-width effects. In particular, the gap in generalization for equal widths γ1 = · · · = γℓ = γ is

ϵRF − ϵNN

1− α+ η2
=

ℓ(ℓ+ 1)

2σ̃2

α2

γ2
+O

(
α3

γ3

)
, (5)

for σ̃2 = σ2/[1 + η2/(1 − α). The leading term in this expansion is positive, hence at very large
widths training both layers should produce a small benefit relative to simply training the readout. For
ℓ = 1, one can show that ϵRF ≥ ϵNN at any width, with equality iff α = 0 or γ1 → ∞. This behavior,
and the excellent agreement of our theory with numerical experiment, is illustrated in Figure 3.

3 Conclusion

We have characterized how representational flexibility affects generalization performance in deep
linear Bayesian regression models. We showed that mismatch in the prior and target scales determines
when wider models generalize better, and that representational flexibility has a subleading effect on
generalization at large widths.

We conclude by noting that our work has several important limitations beyond the non-rigorous nature
of the replica method, which will be interesting to address in future work. First, our approach is
highly specialized to deep linear networks, and would not extend easily to nonlinear models. Though
the utility of linear networks as a model system for studying the effect of depth on inference has been
clearly established [33, 35, 37, 39], rigorous characterization of the effect of nonlinearity on inference
in deep Bayesian neural networks remains a largely open problem [4, 30, 31, 33, 35, 36, 48]. Second,
we have assumed that the covariates are drawn from an isotropic Gaussian distribution. Though this
is a standard generative model in theoretical studies of inference [21, 38, 39, 47], it is undoubtedly
not reflective of real-world data. Extending results of this form to more realistic generative models
will be an interesting objective for future work [20, 49]. Finally, while BNNs are finding practical
applications in physics and elsewhere [50], another important direction for future work will be to
develop a rigorous theoretical understanding of how results on the generalization performance of
BNNs, like those obtained here, relate to the generalization performance of networks trained with
stochastic gradient-based algorithms, a link that remains incompletely understood [40, 42, 51, 52].

4 Broader impacts

As our work is purely theoretical, we do not anticipate that it will have direct societal impacts.
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