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Abstract

The Gluonic Excitations (GlueX) experiment is designed to search for exotic hybrid
mesons using photoproduction, and to study the hybrid meson spectrum predicted
from Lattice Quantum Chromodynamics. For the first time, the GlueX Central Drift
Chamber was controlled autonomously using machine learning (ML) to calibrate
in real time while recording cosmic ray tracks. We demonstrate the ability of a
Gaussian Process to predict the gain correction calibration factor used to determine
a high voltage setting that will stabilize the CDC gain in response to changing
environmental conditions; this is in contrast to the traditional, computationally
expensive method of calibrating raw data after data collection is complete.

1 Introduction

The Gluonic Excitations (GlueX) detector [1] is located at the Thomas Jefferson National Accelerator
Facility. It is a complex detector comprised of several sub-detector systems shown in Fig. 1. The
GlueX experiment typically collects data for a few months at a time. Each detector system is
calibrated individually followed by multiple rounds of inter-dependent calibrations that are performed
after data collection has completed. This process is repeated for each independent ‘run’, during which
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data were collected for up to 2 hours. Proper calibration of the detector requires significant time
from the individual detector experts and computing resources (on the order of months of calendar
time). In contrast, machine learning (ML) can approximate these calibrations in seconds while
simultaneously taking data. Adoption of a ML approach for detector control requires a method that
(1) satisfies accuracy requirements, (2) reduces the time and compute resources to calibrate data, and
(3) accurately estimates the model uncertainty.

(a)

(b)

Figure 1: The GlueX detector system. (a) Schematic of the GlueX spectrometer with labels for most
of the major detector systems. (b) The GlueX Spectrometer at Jefferson Lab with a human in front
for scale.

2 The Central Drift Chamber and Traditional Calibration

The CDC [2] is a 150 cm long, 120 cm diameter, cylindrical straw tube drift chamber used for charged
particle tracking and identification. A 50:50 Ar:CO2 gas mixture flows through the chamber. Charged
particles passing through the chamber ionize the gas along their path, and the liberated avalanche of
electrons drifts towards the anode wires, which are maintained at high positive voltage (HV), and
creates a pulse ’hit’ on the wire which is read out by the detector’s electronics. The pattern of hits
on the 3522 wires is used to reconstruct the track(s) of the particle(s). The pulse amplitude is used
together with the path length of the track through the straw tubes of the CDC to calculate dE/dx, a
measure of energy deposited per unit length as a particle travels through the detector, an important
feature of particle identification. The gas gain, the ratio of final to initial number of electrons in the
avalanche, is sensitive to the gas density. The CDC is operated at atmospheric pressure, thus the
variation in gain with atmospheric pressure and gas temperature can be accounted for via calibration.
This calibration is usually performed after data taking and relies on reconstructing particle tracks, a
slow and computationally expensive process [1].

3 Calibration and control of the CDC using a Gaussian process regression

3.1 Central Drift Chamber data

Data were extracted from two sources: the Experimental Physics Industrial Controls System (EPICS)
[3], and the Hall-D Calibration Constants Database (CCDB) [4]. Data specific to the CDC were
extracted from the EPICS archive for use as input variables. The CCDB contains the calibration
values for all sub-detector elements and is the source of our target value, the Gain Correction Factor
(GCF), for each experimental run. Features from EPICS are readily available throughout data-taking,
which is important for online control.

Over 120 variables were retrieved from EPICS for a trailing 15-second look-back time before the
start of each run. Some features, e.g. particle momentum, while correlated with gain, were excluded
as their calculation requires computationally expensive track reconstruction, making them unsuitable
for real-time control. Additionally, features from other sub-detectors were found to be correlated
with GCF, but were excluded to ensure the CDC control system is self-contained, ensuring no data
from other detectors are used. This is especially important in case some sub-detectors may not be
used in future experiments.
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Shapley [5] feature importance evaluation identified three variables to predict GCF. Reassuringly,
these were consistent with known drift chamber behavior: the mean atmospheric pressure, the
maximum gas temperature, and the sum of the maximum gas temperatures and mean current drawn
by the innermost high voltage (HV) boards on the CDC (a CDC-specific proxy for the rate of charged
particles passing through the detector). For training purposes, data were used from experiments
performed during 2020 and 2021. The data included 536 and 65 runs from the 2020 and 2021
experiments.

Balancing the distributions of atmospheric pressure between training and test data sets was motivated
by the scarcity of extreme values in atmospheric pressure during data taking. A low pressure
threshold of <= 99.27 kPa and a high pressure threshold of >= 101.57 kPa provided similar pressure
distributions and adequate diversity of gas temperature and HV board current values for low, medium
and high pressure data within the pressure balanced training and test data sets. Data were split into
80/20 pressure-balanced training (480 runs) and test (121 runs) datasets. Input features and target
values were set to zero mean and unit variance using Scikit-Learn’s [6] StandardScaler.

3.2 Using Gaussian process regression to predict the Gain Correction Factor

A Gaussian process (GP) with a single output parameter infers a latent function Rd → R to map
training input X and corresponding targets y [7]. Where X is the matrix of N observations of the
selected features, xn ∈ Rp, and where n is the nth observation and p is the number of features, in
our case three.

The mapping uses a selected covariance function to control the smoothness of the mapping output
from one training point to the next closest training point. Here the covariance function k is applied to
N measurements x to produce the N ×N Gram matrix, Kn,n′ = k(xn, xn′

). [7]. In our case, k(·, ·)
is a sum kernel of Scikit-learn’s [6] Radial Basis Function (RBF), as shown in Eq. 1, and White
Noise (WN), as shown in Eq. 2. The RBF explains the covariance of the data, where l is the learned
length scale parameter used to scale the difference in distance between training observations.

kRBF (x, x
′) = exp

(
− (x− x′)2

2l2

)
(1)

The WN is used to describe the combined global noise in the data, where σ2 is the variance of the
noise, and In is the identity matrix.

kWN (x, x′) = σ2In, (2)

Percent error was selected as the evaluation metric based on the use of GCF to scale CDC gain. [6]’s
GaussianProcessRegressor was trained for 100 iterations to learn the RBF length scale and a white
noise parameter. The mean percent error of the test set runs was 0.8% (0.59% for training data). For
reference, our target was 5% error. The maximum percent error of the test set runs was 5.9% (2.6%
for training data). 36 of the 121 test runs had an error over 1%. Only eight test runs had error over
2%.

We evaluated two versions of the kernel, one with a single length scale that accounts for all features
(isotropic), and a second with three length scales, one per feature (anisotropic). The anisotropic
kernel had negligible effect on either max (anisotropic 5.8% v. isotropic 5.9%), or mean absolute
percent error (anisotropic 0.8% v. isotropic 0.8%), most likely due to the strong known relation of
atmospheric pressure (our first feature) to GCF. This is demonstrated by the GP’s learned length
scales; the first length scale of the anisotropic kernel, 1.400, is consistent with the single length scale,
1.412, of the isotropic kernel. The isotropic kernel was used for the cosmic ray experiment.

The degree to which a predicted uncertainty matched the true underlying uncertainty in the data was
evaluated using standard metrics from the Uncertainty Toolbox[8]. Fig. 2 shows [8]’s "Average
Calibration" plot for both kernel types. Our model was marginally underconfident with a 4%
miscalibration area for both kernels. R-square, Root Mean Square Error (RMSE), Mean Absolute
Calibration Error (MACE), and Root Mean Square Calibration Error (RMSCE) are shown in Table 1.
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(a) (b)

Figure 2: for the isotropic kernel (a), and anisotropic kernel (b), shows the predicted proportion of
the test data expected to lie inside the prediction interval (x-axis) and the proportion of the test data
observed inside the prediction interval on the y-axis. For example, the 0.75 prediction interval aims
to include observed values 75% of the time.

Table 1: Uncertainty Toolbox accuracy and average calibration metrics for GP models. Metrics were
similar for both the isotropic and the anisotropic kernel.

RBF kernel (length scale(s)) noise kernel variance R2 RMSE MACE RMSCE

isotropic (1.412) 0.0154 0.97 0.002 0.040 0.051
anisotropic (1.400,1.17,1.71) 0.0153 0.97 0.002 0.038 0.049

4 Cosmic Ray Test Setup, Autonomous CDC Control, and Results

To test the performance of the model, cosmic ray data were collected for 2 weeks. This made use
of cosmic rays passing through the detector instead of charged particles emerging from collisions
between the photon beam and target. As such, we set the HV board current given to the model to be
9.0 nA in accordance with the mode of HV board current in our training data. In order to compare
the behavior of the CDC operating at a constant HV to a GP-tuned HV, we used software to divide
the operation of the CDC into two sections: one was held at 2130 V and the other was updated to the
HV setting determined using the GP prediction every five minutes.

Using the predicted GCFs, the HV setting was determined from a second order polynomial fit to the
HV as a function of the peak amplitude relative to that obtained at the nominal operating voltage. By
exploiting the empirically derived correlation of peak height and HV we could use the GP-predicted
GCF and an "ideal" GCF to obtain a HV setting that stabilized the CDC gain.

After retrieving the input features from EPICS, a prediction is returned in 3 milliseconds utilizing an
x86_64 CPU. GCF inference was conducted every minute. The HV was adjusted every 5 minutes.
The atmospheric pressure does not usually change fast enough for more frequent measurements to
be interesting, and also we needed to collect sufficient data at each setting to obtain the GCF. All
inferences and HV settings were logged for further analysis.

In Fig. 3, a subset of the cosmic ray data corresponding to the largest change and subsequent
stabilization of the atmospheric pressure is shown. We compare traditionally calculated GCF for
the GP-controlled (blue) and constant HV (orange) sections of the CDC as a function of the event
number. The orange distribution displays the usual behavior of the CDC at a constant HV, which
would be compensated for via calibration after data taking. For the model-controlled side of the CDC,
the CDC is unaffected by changes in environmental and experimental conditions.
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Figure 3: Traditionally calculated GCF for the model-controlled (blue) and constant 2130 HV (orange)
sections of the CDC for a subset of the cosmic ray experiment corresponding to the largest change in
atmospheric pressure.

5 Ongoing work and Conclusions

Developments are underway to improve the system’s robustness to out-of-domain inferences using
a learned prior and evaluate the assumption of homogeneous noise. During the course of this
work, we started to explore the possibilities for the control software to make an action based on the
uncertainty quantification from the model. This will be useful for deployment in experiments using
the accelerator, where the CDC’s output is vital to physics analysis but was unnecessary for this
cosmic ray experiment.

In this work we have shown that a simple Gaussian process model with uncertainty quantification
was accepted for use and implemented to control the HV of the GlueX Central Drift Chamber, an
expensive particle detector critical to experiments that take place in Hall D at the Thomas Jefferson
National Accelerator Facility. This work represents a dramatic shift from calibrating terabytes of data
after an experiment has completed to near-real-time calibrations, resulting in significant time and
computational savings. This system is expected to be directly applicable to other detector systems
used in Nuclear and High Energy Physics experiments.

6 Impact Statement

We hope this demonstration of a data-driven technique that (1) satisfies accuracy requirements, (2)
reduces the time and compute resources to calibrate data, and (3) accurately estimates uncertainty
inspires particle detector experts and experimentalists who must calibrate massive amounts of raw
sensor data to investigate machine learning methods to replace computationally expensive and time
intensive traditional methods. Trustworthy data-driven methods are required for physicists to accept
data-driven techniques as a replacement for traditional calculations, and trustworthy machine learning
must include the ability of a model to say, “I don’t know,” which is possible with well-calibrated
UQ. As [9] states, “Predictions without UQ are neither predictions nor actionable.” Additionally,
high performance computing resources are in demand, and calibration-via-online-control reduces the
computational and energy footprint of the resulting physics analyses.
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