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Abstract

Computed tomography has propelled scientific advances in fields from biology
to materials science. This technology allows for the elucidation of 3-dimensional
internal structure by the attenuation of x-rays through an object at different rotations
relative to the beam. By imaging 2-dimensional projections, a 3-dimensional object
can be reconstructed through a computational algorithm. Imaging at a greater
number of rotation angles allows for improved reconstruction. However, taking
more measurements increases the x-ray dose and may cause sample damage. Deep
neural networks have been used to transform sparse 2-D projection measurements
to a 3-D reconstruction by training on a dataset of known similar objects. However,
obtaining high-quality object reconstructions for the training dataset requires high
x-ray dose measurements that can destroy or alter the specimen before imaging is
complete. This becomes a chicken-and-egg problem: high-quality reconstructions
cannot be generated without deep learning, and the deep neural network cannot
be learned without the reconstructions. This work develops and validates a self-
supervised probabilistic deep learning technique, the physics-informed variational
autoencoder, to solve this problem. A dataset consisting solely of sparse projection
measurements from each object is used to jointly reconstruct all objects of the
set. This approach has the potential to allow visualization of fragile samples with
x-ray computed tomography. We release our code for reproducing our results at:
https://github.com/vganapati/CT_PVAE.

1 Introduction & Related Work

1.1 Computed Tomography

The power of x-rays to penetrate through many materials has allowed for advances in scientific
understanding. In particular, computed tomography has been used in fields such as biology [1],
medicine [2], materials science [3], and geoscience [4] to elucidate the internal structure of samples.
Computed tomography works by measuring the attenuation of an x-ray beam through an object at
different rotations relative to the beam. From the projection images created by parallel beams at
each rotation, a 3-dimensional object can be reconstructed with a computational algorithm. Imaging
at many rotation angles allows for improved reconstruction, however, fragile samples can only be
imaged under limited x-ray dose before damage and structural changes occur.

1.2 Reconstruction Algorithms

A 3-dimensional object can be reconstructed from projection images through direct algorithms such as
filtered backpropagation or iterative algorithms [5, 6]. In recent years, algorithms using deep learning
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have come into prominence [5,7–12]. In these approaches, the parameters of the deep neural network
are found by training on large datasets of known input-output pairs. The computational burden
of training is high and a training dataset is required, which can be generated through high-quality
experimental data and traditional algorithms. However, once trained, a relatively quick forward pass
through the network can generate the reconstruction [5]. Deep learning has also shown the potential
to improve upon conventional methods when there are a limited number of projection images, as a
prior is learned from the data and embedded into the neural network parameters [5, 7].

1.3 Deep Learning without Ground Truth

While deep learning methods for computed tomography are promising, these approaches require
a training dataset of reconstructions. High-quality reconstructions need measurements at many
rotation angles, and this high radiation dose may destroy or alter fragile specimens during the data
acquisition process. A chicken-and-egg problem presents itself: the deep learning algorithm needs
reconstructions, and the reconstructions need the deep learning algorithm.

An approach to solve this problem involves using training datasets consisting only of sparse angle
measurements for every object of the set. The intuition is that these sparse measurements taken
together can provide enough information to infer a prior distribution of the objects. One method
is to train generative adversarial networks to create high-quality reconstructions by rewarding re-
constructions that have corresponding sparse measurements that lie in the training distribution of
sparse measurements [13–17]. Another method is to train directly with low-dose measurements,
penalizing reconstructions by the discrepancy between simulated low-dose and true low-dose mea-
surements [18–21]. Finally, other works use multiple low-dose measurements of each object in
training [22, 23], though this may be unsuitable for fragile samples that cannot withstand repeated
measurement.

1.4 Probabilistic Formulation

In all deep learning methods without ground truth surveyed, the reconstruction is given as a point
estimate. In this work, we aim to find the posterior probability distribution P (O|M), where O
is the object being reconstructed and M = [M1,M2, ...,Mn] are the measurements, allowing the
uncertainty of the prediction to be modeled. We aim to lower the total number of measurements n to
minimize the x-ray dose. We assume that we have a set of m objects {O1, O2, ..., Om}, sampled from
some distribution P (O), and we aim to reconstruct all objects in the set. For each of the m objects, we
are allowed n measurements. Each set of measurements for an object j, Mj = [Mj1,Mj2, ...,Mjn]
is obtained with chosen rotation angles pj = [pj1, pj2, ..., pjn]. We assume that the forward model
physics P (M |O; p) = P (M |O) is known; in computed tomography the forward model is the
Radon transform with Poisson noise. For every object O, we aim to find the posterior distribution
P (O|M) = P (M |O)P (O)

P (M) . This work tackles the following problems that arise in finding the posterior:
(1) construction of the prior P (O) with no directly observed O, only measurements M on each object
of the set, (2) calculating P (O|M) in a tractable manner.

2 Methods

2.1 Physics-Informed Variational Autoencoder

We create a framework for posterior estimation that is inspired by the mathematics of the variational
autoencoder [24, 25]. In a variational autoencoder, the goal is to learn how to generate new examples,
sampled from the same underlying probability distribution as a training dataset of objects. To
accomplish this task, a latent random variable z is created that describes the space on a lower-
dimensional manifold. A deep neural network defines a function (the “decoder”) from a sample of z
to a probability distribution P (O|z). The parameters of the deep neural network are optimized to
maximize the probability of generating the objects of the training dataset.

In this work, we aim to find the posterior probability distribution P (O|M), where O is the object
being reconstructed and M are the projection measurements. In our case, we only have a dataset of
noisy measurements M and no ground truth objects O. However, the forward model, P (M |O), is
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known. Thus, instead of maximizing the probability of generating O, we can maximize the probability
of generating M , a formulation we call the “physics-informed variational autoencoder.”

Figure 1: The developed physics-informed variational autoencoder.

We aim to maximize P (M) =
∫ ∫

P (M |O)P (O|z)P (z)dOdz. To compute this integral in a
computationally tractable manner, we can approximate with sampled values. As in [24, 25], for
most randomly sampled values of z and O, the probability P (M |O, z) is close to zero, causing poor
scaling of sampled estimates. Similar to variational autoencoders, our framework solves this problem
by estimating the parameters of P (z|M) by processing the measurements M using a function with
trainable parameters (called the “encoder,” also formulated as a deep neural network). The estimate
of P (z|M) is denoted Q(z|M). The Kullback–Leibler divergence between the distributions is given
by D[Q(z|M)||P (z|M)] = Ez∼Q[logQ(z|M)− logP (z|M)]. We also have, by Bayes’ Theorem,
logP (z|M) = logP (M |z) + logP (z)− logP (M). Combining the expressions yields:

logP (M)−D[Q(z|M)||P (z|M)] = Ez∼Q

[∫
P (M |O)P (O|z)dO

]
−D [logQ(z|M)|| logP (z)] .

The first term on the right side of this expression can be estimated with sampled values. As
Kullback–Leibler divergence is always ≥ 0 and reaches 0 when Q(z|M) = P (z|M), maximizing
the right side (defined here as the−loss) during training causes P (M) to be maximized while forcing
Q(z|M) towards P (z|M). In contrast to a conventional variational autoencoder, we do not attempt
to use this formulation to synthesize arbitrary objects O by sampling P (z) directly. This framework
only attempts reconstruction on the training examples themselves. After training, P (O|M) for
every object can be sampled by first sampling Q(z|M) then P (O|z); see Fig. 1. Crucially, unlike
most data-driven approaches to reconstruction in computational imaging, the developed framework
assumes that no ground truth dataset of objects O is available.

In this work, the encoder and decoder of Fig. 1 take the same basic shape as a U-Net [26]. The
input to the encoder is an object reconstruction created with a standard algorithm from the sparse set
of projections, using the TOMOPY Python package [27], as well as specification of the projection
angles used. The skip connections to the decoder are parametrized as Gaussian distributions, and
sampled to determine the latent variables z. The likelihood distribution P (M |O) is given by the
Radon transform with the addition of Poisson noise.

3 Results & Discussion

We prototype and validate the physics-informed variational autoencoder with synthetic datasets.
Code to reproduce our results are at https://github.com/vganapati/CT_PVAE. We utilize 2-D
objects and 1-D projections without loss of generality; a 3-D object in x-ray computed tomography is
reconstructed as a series of 2-D axial slices.

3.1 Simple Toy Example

Figure 2: Toy dataset consist-
ing of 2 object types.

Our first dataset consists of two unique objects. Each object can be
represented by 2× 2 pixels, and projections can be taken at rotation
angles of 0 and π

2 radians; see Fig. 2. The projection of both the
objects at π2 is the same, but the projections at 0 radians are different.
We assume that P (O = O1) = P (O = O2) =

1
2 . We sample P (O),

and then take a noisy measurement M = [M1] at one rotation angle
p (i.e. n = 1 and P (p = 0) = P (p = π

2 ) =
1
2 ). We complete this

sampling and measurement procedure m = 1024 times. From all
the measurements, and no knowledge of the prior P (O), we aim to
determine the posterior P (O|M) for each M by training the physics-
informed variational autoencoder. Training on an NVIDIA GeForce
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(a) O1 measured at π
2

radians. (b) O1 measured at 0 radians.

Figure 3: Marginal posterior probabilities for each pixel from measurements on the toy dataset;
measurements taken on object O1 of the dataset. See Fig. 5 in the Appendix for posteriors on O2.

GPU takes 47 minutes. Training parameters are available in the released documentation and code.
The true posterior is compared with the posterior from 20 000 samples of the trained physics-informed
variational autoencoder, showing good qualitative agreement; see Fig. 3. The marginal posterior for
each of the four pixels is compared for four different example measurements. With measurements
taken at the rotation angle π

2 , there is approximately equal probability of the pixel values from the
two object types. However, with measurements taken at 0 radians, the posterior is nearly a delta
function at the true pixel value.

3.2 Synthetic Foam Dataset

We generate the second dataset of 1 000 foam images of 128×128 pixels through the Python package
XDESIGN [28], and projections are taken at 180 equally-spaced angles. The image of the projections
is known as the sinogram, and we emulate sparse sinograms by removing 160 of the projection angles
either uniformly or randomly; see Fig. 6 in the Appendix for example images and corresponding
sinograms of the dataset. We jointly reconstruct all images of this dataset by training the physics-
informed variational autoencoder. Training on an NVIDIA Tesla V100 takes 2.2 hours. Training
parameters are available in the released code and documentation.

Fig. 4 depicts example objects from the synthetic foam dataset, reconstructed with the Fourier
grid reconstruction algorithm (gridrec) [29]. Reconstructions were performed with two other
standard algorithms, the simultaneous algebraic reconstruction technique [27] and the Total Variation
reconstruction technique [30]; however gridrec outperformed these techniques on image quality
metrics of structural similarity (SSIM), mean-squared error (MSE), and peak signal-to-noise (PSNR).
The reconstructions with gridrec on the sparse sinograms are compared with the reconstructions
from the physics-informed variational autoencoder (P-VAE); see Fig. 4. We observe that the P-VAE
improves over gridrec for the sparse sinograms, and there is a slight improvement by randomly
selecting the angles in every example over uniform sampling; see Fig. 7 in the Appendix for results
averaged over the entire 1 000 object dataset and aggregated over 10 independent trials.

(a) Example 1 (b) Example 2 (c) Example 3
Figure 4: Foam dataset reconstruction results.

4 Conclusions & Limitations

We present a novel data-driven, self-supervised algorithm for image reconstruction in computed
tomography and validate on synthetic datasets. Our method is probabilistic, allowing for quantification
of uncertainty in applications, and self-supervised, requiring no ground truth or reference training
examples. Though initial results are promising, our work is limited in that we only consider highly
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synthetic data. Real experimental data may pose additional problems such as model mismatch that
need to be considered in the construction of the likelihood P (M |O). In experiments, thousands
of rotation angles may be collected with measurements on the order of 100 GB per object [6]. An
important direction for future work is high memory management techniques for training.

5 Broader Impact

Computed tomography uses x-rays to probe the 3-dimensional internal structure of objects, and is
widely used in many fields such as medicine, biology, and materials science. However, x-rays can
cause sample damage and deformation during the measurement process, limiting the use cases of
computed tomography. Much effort has been put into sparse computed tomography, where a limited
number of measurements are used to measure and reconstruct an object. This work proposes a novel
algorithm for reconstruction in sparse computed tomography, with the potential positive broader
impact of making visualization of radiation-damage prone objects possible. However, practitioners
should be careful in applying these methods as there are no theoretical guarantees thus far. Application
of this method could result in reconstruction artifacts that may have a different appearance than
artifacts from conventional methods, evading detection.
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A Appendix

(a) O2 measured at π
2

radians. (b) O2 measured at 0 radians.

Figure 5: Marginal posterior probabilities for each pixel from measurements on the toy dataset;
measurements taken on object O2 of the dataset.

Figure 6: Object examples generated for the foam image dataset. Complete sinograms are taken
at 180 equally spaced rotation angles. Uniformly sparse sinograms are taken at 20 equally spaced
angles and randomly sampled sparse sinograms are taken at 20 randomly chosen angles; these angles
are re-sampled for each object of the dataset.

9



Figure 7: Image quality metrics of structural similarity (SSIM), peak signal-to-noise (PSNR), and
mean-squared error (MSE) for reconstruction algorithms applied to the synthetic foam dataset,
averaged over the entire dataset for 10 independent optimization trials. Reconstructions from (a)
gridrec with the complete sinogram of 180 rotation angles, (b) gridrec with the sparse sinogram
of 20 angles, uniformly spaced, (c) gridrec with the sparse sinogram of 20 angles, randomly spaced,
with each example having different angles chosen, (d) the physics-informed variational autoencoder
with the sparse sinogram of 20 angles, uniformly spaced, and (e) the physics-informed variational
autoencoder with the sparse sinogram of 20 angles, randomly spaced.
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