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Abstract

We analyze feature learning in infinite-width neural networks trained with gradient
flow through a self-consistent dynamical field theory. We construct a collection
of deterministic dynamical order parameters which are inner-product kernels for
hidden unit activations and gradients in each layer at pairs of time points, providing
a reduced description of network activity through training. These kernel order
parameters collectively define the hidden layer activation distribution, the evolution
of the neural tangent kernel, and consequently output predictions. We provide a
sampling procedure to self-consistently solve for the kernel order parameters.

1 Introduction

Deep learning has emerged as a successful paradigm for solving challenging machine learning and
computational problems across a variety of domains [1, 2]. However, theoretical understanding
of the training and generalization of modern deep learning methods lags behind current practice.
Ideally, a theory of deep learning would be analytically tractable, efficiently computable, capable
of predicting network performance and internal features that the network learns, and interpretable
through a reduced description involving desirably initialization-independent quantities.

Several recent theoretical advances have fruitfully considered the idealization of wide neural networks,
where the number of hidden units in each layer is taken to be large. Under certain parameterization,
Bayesian neural networks and gradient descent trained networks converge to gaussian processes
(NNGPs) [3–5] and neural tangent kernel (NTK) machines [6–8] in their respective infinite-width
limits. These limits provide both analytic tractability as well as detailed training and generalization
analysis [9–16]. However, in this limit, with these parameterizations, data representations are fixed
and do not adapt to data, termed the lazy regime of NN training, to contrast it from the rich regime
where NNs significantly alter their internal features while fitting the data [17, 18]. The fact that the
representation of data is fixed renders these kernel-based theories incapable of explaining feature
learning, an ingredient which is crucial to the success of deep learning in practice [19, 20]. Thus,
alternative theories capable of modeling feature learning dynamics are needed.

Recently developed alternative parameterizations such as the mean field [21] and the µP [22]
parameterizations allow feature learning in infinite-width NNs trained with gradient descent. Using
the Tensor Programs framework, Yang & Hu identified a stochastic process that describes the
evolution of preactivation features in infinite-width µP NNs [22]. In this work, we study an equivalent
parameterization to µP with self-consistent dynamical mean field theory (DMFT) and recover the
stochastic process description of infinite NNs using this alternative technique. In the same large
width scaling, we include a scalar parameter γ0 that allows smooth interpolation between lazy and
rich behavior [17]. We provide a new computational procedure to sample this stochastic process and
demonstrate its predictive power for wide NNs.
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The present work is a short version of our paper appearing in the main meeting [23]. Our contributions
in these works are the following:

1. We develop a path integral formulation of gradient flow dynamics in infinite-width networks in the
feature learning regime. Our parameterization includes a scalar parameter γ0 to allow interpolation
between rich and lazy regimes and comparison to perturbative methods.

2. Using a stationary action argument, we identify a set of saddle point equations that the kernels
satisfy at infinite-width, relating the stochastic processes that define hidden activation evolution to
the kernels and vice versa. We develop a numerical algorithm to solve these equations and show
they are predictive of wide networks feature learning dynamics.

Our theory is inspired by self-consistent dynamical mean field theory (DMFT) from statistical physics
[24–30]. This framework has been utilized in the theory of random recurrent networks [31–36],
tensor PCA [37, 38], phase retrieval [39], and high-dimensional linear classifiers [40–43], but has yet
to be developed for deep feature learning. By developing a self-consistent DMFT of deep NNs, we
gain insight into how features evolve in the rich regime of network training, while retaining many
pleasant analytic properties of the infinite-width limit.

2 Problem Setup and Definitions

Our theory applies to infinite-width networks, both fully-connected and convolutional. For notational
ease we will focus on the MLP formalism. For input xµ ∈ RD, we define the hidden pre-activation
vectors h` ∈ RN for layers ` ∈ {1, ..., L} as

fµ =
1

γ
√
N
wL · φ(hLµ) , h`+1

µ =
1√
N
W `φ(h`µ) , h1

µ =
1√
D
W 0xµ, (1)

where θ = Vec{W 0, ...,wL} are the trainable parameters of the network and φ is a twice differ-
entiable activation function. Inspired by previous works on the mechanisms of lazy gradient based
training, the parameter γ will control the laziness or richness of the training dynamics [17, 18, 22, 44].
Each of the trainable parameters are initialized as Gaussian random variables with unit varianceW `

ij ∼
N (0, 1). They evolve under gradient flow d

dtθ = −γ2∇θL. The choice of learning rate γ2 causes
d
dtL|t=0 to be independent of γ. To characterize the evolution of weights, we introduce backpropaga-
tion variables g`µ = γ

√
N

∂fµ
∂h`µ

= φ̇(h`µ)� z`µ, where z`µ = 1√
N
W `>g`+1

µ is the pre-gradient signal.

The relevant objects to characterize feature learning are feature and gradient kernels for each hidden
layer ` ∈ {1, ..., L}, defined as Φ`µα(t, s) = 1

N φ(h`µ(t)) · φ(h`α(s)) , G`µα(t, s) = 1
N g

`
µ(t) ·

g`α(s). From these kernels {Φ`, G`}L`=1, we can compute the Neural Tangent Kernel KNTK
µα (t, s) =

∇θfµ(t) · ∇θfα(s) =
∑L
`=0G

`+1
µα (t, s)Φ`µα(t, s), [6] and the dynamics of the network function fµ

d

dt
fµ(t) =

P∑
α=1

KNTK
µα (t, t)∆α(t) , ∆µ(t) = − ∂

∂fµ
L|fµ(t), (2)

where we define base cases GL+1
µα (t, s) = 1,Φ0

µα(t, s) = Kx
µα = 1

Dxµ · xα. The above expressions
demonstrate that knowledge of the temporal trajectory of the NTK on the t = s diagonal gives
the temporal trajectory of the network predictions fµ(t). Following prior works on infinite-width
networks [21, 22, 45, 18], we study the mean field limit N, γ → ∞ , γ0 = γ√

N
= ON (1). The

γ0 = 0 limit recovers the static NTK limit [6], while γ0 > 0 allows feature learning.

3 Self-consistent DMFT

Next, we derive our self-consistent DMFT in a limit where t, P = ON (1). Our goal is to build
a description of training dynamics purely based on representations, and independent of weights.
Studying feature learning at infinite-width enjoys several analytical properties:

• The kernel order parameters Φ`, G` concentrate over random initializations but are dynamical,
allowing flexible adaptation of features to the task structure.
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• In each layer `, each neuron’s preactivation h`i and pregradient z`i become i.i.d. draws from a
distribution characterized by a set of order parameters {Φ`, G`, A`, B`}.

• The kernels are defined as self-consistent averages (denoted by 〈〉) over this distribution of neurons
in each layer Φ`µα(t, s) =

〈
φ(h`µ(t))φ(h`α(s))

〉
and G`µα(t, s) =

〈
g`µ(t)g`α(s)

〉
.

The next section derives these facts from a path-integral formulation of gradient flow dynamics.

3.1 Path Integral Construction

Gradient flow after a random initialization of weights defines a high dimensional stochastic process
over initalizations for variables {h, g}. Therefore, we will utilize DMFT formalism to obtain a
reduced description of network activity during training. Generally, we separate the contribution on
each forward/backward pass between the initial condition and gradient updates to weight matrixW `,
defining new stochastic variables χ`+1

µ (t) = 1√
N
W `(0)φ(h`µ(t)) , ξ`µ(t) = 1√

N
W `(0)>g`+1

µ (t).
We let Z represent the moment generating functional (MGF) for these stochastic fields

Z[{j`,v`}] =

〈
exp

∑
`,µ

∫ ∞
0

dt
[
j`µ(t) · χ`µ(t) + v`µ(t) · ξ`µ(t)

]〉
{W 0(0),...wL(0)}

, (3)

Performing integration over possible paths for χ`, ξ`, we show that the MGF Z can be described by
set of order-parameters {Φ`, Φ̂`, G`, Ĝ`, A`, B`} [23]

Z[{j`,v`}] ∝
∫ ∏

`µαts

dΦ`µα(t, s)dΦ̂`µα(t, s)dG`µα(t, s)dĜ`µα(t, s)dA`µα(t, s)dB`µα(t, s) (4)

× exp
(
NS[{Φ, Φ̂, G, Ĝ, A,B, j, v}]

)
,

S =
∑
`µα

∫ ∞
0

dt

∫ ∞
0

ds
[
Φ`µα(t, s)Φ̂`µα(t, s) +G`µα(t, s)Ĝ`µα(t, s)−A`µα(t, s)B`µα(t, s)

]
+ lnZ[{Φ, Φ̂, G, Ĝ, A,B, j, v}], (5)

where S is the DMFT action and Z is a single-site MGF, which defines the distribution of fields
{χ`, ξ`} over the neural population in each layer. The order parameters A and B are related to the
correlations between feedforward and feedback signals in the network.

3.2 Deriving the DMFT Equations from the Path Integral Saddle Point

As N →∞, the moment-generating function Z is exponentially dominated by the saddle point of S.
The equations that define this saddle point also define our DMFT. We thus identify the kernels that
render S locally stationary (δS = 0). The most important equations are those which define {Φ`, G`}

δS

δΦ̂`µα(t, s)
= Φ`µα(t, s) +

1

Z
δZ

δΦ̂`µα(t, s)
= Φ`µα(t, s)−

〈
φ(h`µ(t))φ(h`α(s))

〉
= 0,

δS

δĜ`µα(t, s)
= G`µα(t, s) +

1

Z
δZ

δĜ`µα(t, s)
= G`µα(t, s)−

〈
g`µ(t)g`α(s)

〉
= 0, (6)

where 〈〉 denotes an average over the stochastic process induced by Z , which is defined below

{u`µ(t)}µ∈[P ],t∈R+
∼ GP(0,Φ`−1) , {r`µ(t)}µ∈[P ],t∈R+

∼ GP(0,G`+1),

h`µ(t) = u`µ(t) + γ0

∫ t

0

ds

P∑
α=1

[
A`−1µα (t, s) + ∆α(s)Φ`−1µα (t, s)

]
z`α(s)φ̇(h`α(s)),

z`µ(t) = r`µ(t) + γ0

∫ t

0

ds

P∑
α=1

[
B`µα(t, s) + ∆α(s)G`+1

µα (t, s)
]
φ(h`α(s)), (7)

where we define base cases Φ0
µα(t, s) = Kx

µα and GL+1
µα (t, s) = 1, A0 = BL = 0. We see that

the fields {h`, z`}, which represent the single site preactivations and pre-gradients, are implicit
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functionals of the mean-zero Gaussian processes {u`, r`} which have covariances
〈
u`µ(t)u`α(s)

〉
=

Φ`−1µα (t, s) and
〈
r`µ(t)r`α(s)

〉
= G`+1

µα (t, s). The other saddle point equations give response functions

A`µα(t, s) = γ−10

〈
δφ(h`µ(t))

δr`α(s)

〉
, B`µα(t, s) = γ−10

〈
δg`+1
µ (t)

δu`+1
α (s)

〉
which arise due to coupling between

the feedforward and feedback signals. We note that, in the lazy limit γ0 → 0, the fields approach
Gaussian processes h` → u`, z` → r`.

4 Solving the Self-Consistent DMFT
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Figure 1: Neural network feature learning dynamics is captured by self-consistent dynamical mean
field theory (DMFT). (a) Training loss curves on a subsample of P = 10 CIFAR-10 training points
in a depth 4 (L = 3, N = 2500) tanh network (φ(h) = tanh(h)) trained with MSE. Increasing γ0
accelerates training. (b)-(c) The distribution of preactivations at the beginning and end of training
matches predictions of the DMFT. (d) The final Φ` (at t = 100) kernel order parameters match the
finite width network. (e) The temporal dynamics of the sample-traced kernels

∑
µ Φ`µµ(t, s) matches

experiment and reveals rich dynamics across layers. (f) The alignment A(Φ`
DMFT ,Φ

`
NN ), defined

as cosine similarity, of the kernel Φ`µα(t, s) predicted by theory (DMFT) and width N networks for
different N but fixed γ0 = γ/

√
N . Errorbars show standard deviation computed over 10 repeats.

Around N ∼ 500 DMFT begins to show near perfect agreement with the NN. (g)-(i) The same plots
but for the gradient kernelG`. Whereas finite width effects for Φ` are larger at later layers ` since
variance accumulates on the forward pass, fluctuations inG` are large in early layers.

The saddle point equations obtained from the field theory discussed in the previous section must be
solved self-consistently. By this we mean that, given knowledge of the kernels, we can characterize
the distribution of {h`, z`}, and given the distribution of {h`, z`}, we can compute the kernels
[46, 41]. We use a numerical procedure based on this idea to efficiently solve for the kernels
with an alternating Monte-Carlo strategy. The output of the algorithm are the dynamical kernels
Φ`µα(t, s), G`µα(t, s), A`µα(t, s), B`µα(t, s), from which any network observable can be computed. We
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provide an example of the solution to the saddle point equations compared to training a finite NN in
Figure 1. We plot Φ`, G` at the end of training and the sample-trace of these kernels through time. We
compare kernels of finite width N network to the DMFT predicted kernels using a cosine-similarity
alignment metric A(ΦDMFT ,ΦNN ) = Tr ΦDMFTΦNN

|ΦDMFT ||ΦNN | , with agreement at large N .

We can also compare the exact DMFT equations to approximation schemes employed in prior
works on wide networks. Specifically, we compare static NTK (NTK), perturbative (Pert.) (leading
corrections to feature evolution of size γ20 ) [47] and gradient independence (Gr. Indep.) (backward
pass weights approximated as independent of forward pass) [48]. In Figure 2, we show that only
DMFT is accurate over a wide range of feature learning strengths γ0.
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Figure 2: DMFT is accurate for wide range of γ0, while other approximations including perturbation
theory and gradient independence break down for large γ0.

5 Broader Impacts

We provided a unifying DMFT derivation of feature dynamics in infinite networks trained with
gradient based optimization. Our theory interpolates between lazy infinite-width behavior of a static
NTK in γ0 → 0 and rich feature learning. At γ0 = 1, our DMFT construction agrees with the
stochastic process derived previously with the Tensor Programs framework [22]. Our saddle point
equations give self-consistency conditions which relate the stochastic fields to the kernels. These
equations are exactly solveable in deep linear networks and can be efficiently solved with a numerical
method in the nonlinear case. Comparisons with other approximation schemes show that DMFT can
be accurate at a much wider range of γ0. We believe our framework could be a useful perspective
for future theoretical analyses of feature learning and generalization in wide networks, including
networks trained with alternative learning rules [49].

Though our DMFT is quite general in regards to the data and architecture, the technique is not entirely
rigorous and relies on heuristic physics techniques. Our theory holds in the T, P = ON (1) and
may break down otherwise; other asymptotic regimes (such as P/N, T/ log(N) = ON (1), etc) may
exhibit phenomena relevant to deep learning practice [50, 51]. The computational requirements of
our method, while smaller than the exponential time complexity for exact solution [22], are still
significant for large PT . In Table 1, we compare the time taken for various theories to compute the
feature kernels throughout T steps of gradient descent.

Requirements Width-N NN Static NTK Perturbative Full DMFT
Memory for Kernels O(N2) O(P 2) O(P 4T ) O(P 2T 2)

Time for Kernels O(PN2T ) O(P 2) O(P 4T ) O(P 3T 3)
Time for Final Outputs O(PN2T ) O(P 3) O(P 4) O(P 3T 3)

Table 1: Computational requirements to compute kernel dynamics and trained network predictions on
P points in a depthN neural network on a grid of T time points trained with P data points for various
theories. DMFT is faster and less memory intensive than a width N network only if N � PT . It is
more computationally efficient to compute full DMFT kernels than leading order perturbation theory
when T �

√
P .
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Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] As described in the abstract and introduction, we provide a
dynamical field theory of deep networks based on kernel evolution.

(b) Did you describe the limitations of your work? [Yes] We have an explicit limitations as the
last paragraph of the paper in Section 5.

(c) Did you discuss any potential negative societal impacts of your work? [N/A] This work is
theoretical and is very unlikely to present negative social impacts.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to them?
[Yes]

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [Yes] We describe that our

theory holds for NN architectures in the infinite-width N →∞ limit.
(b) Did you include complete proofs of all theoretical results? [Yes] All claims made in the main

text are supported by derivations in the Appendix.
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experimental re-
sults (either in the supplemental material or as a URL)? [Yes] Code to reproduce experimental
results is provided in the supplementary material.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they were
chosen)? [Yes] We provide details of our experiments in 1

(c) Did you report error bars (e.g., with respect to the random seed after running experiments
multiple times)? [Yes] Mentioned 10 repeats in Figure 1 caption.

(d) Did you include the total amount of compute and the type of resources used (e.g., type of
GPUs, internal cluster, or cloud provider)? [N/A] This is a theory paper

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [N/A]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if applica-
ble? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]
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