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Abstract

We present a machine learning based approach for real-time monitoring of particle
detectors. The proposed strategy evaluates the compatibility between incoming
batches of experimental data and a reference sample representing the data behavior
in normal conditions by implementing a likelihood-ratio hypothesis test. The
core model is powered by recent large-scale implementations of kernel methods,
nonparametric learning algorithms that can approximate any continuous function
given enough data. The resulting algorithm is fast, efficient and agnostic about the
type of potential anomaly in the data. We show the performance of the model on
multivariate data from a drift tube chambers muon detector.
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1 Introduction

Modern high-energy physics experiments consist of complex detectors where hundreds of millions of
sensors are read out as frequently as every few nanoseconds. The electrical signals are amplified,
processed and combined before the trigger selection and the final storage. At each of these steps some
errors can occur and invalidate the whole process. Monitoring systems are deployed to assess the
quality of the data and keep the flow under control throughout all the stages of the acquisition. Data
quality monitoring (DQM) is a challenging task from a statistical point of view due to its high intrinsic
dimensionality and the high level of human supervision required. The unforeseen events incoming
during an experimental run can be several. Some of them can be anticipated and recognised while
they occur, others cannot. The detection of well known dysfunctions could be nonetheless missed due
to the huge amount of channels that should be simultaneously monitored. Developing flexible highly
automatized techniques to supervise multiple variables at once is thus fundamental to reduce the risk
of failures [1, 2, 3, 4]. This work proposes the use of a recent machine learning approach to compare
collected data with a sample of reference events that depicts the correct detector readings. This
reference sample can be, for instance, a set of measurements in a controlled scenario or simulated
events. The basic idea is to perform a hypothesis test powered by a fast and flexible machine learning
(ML) algorithm. In practice, we leverage the ability of binary classifiers to implicitly model the
underlying data-generating distributions and estimate the likelihood ratio test statistics. This is then
used to assess whether the hypothesis underlying the observed data (alternative hypothesis) agrees
with the assumption of normal behavior (null hypothesis). If a set of measurements significantly
deviates from the reference sample, the learned likelihood ratio can be used to characterize the
anomalies in the feature space. To increase the model’s sensitivity, we take a large reference sample
and reduce its statistical fluctuations. This work is inspired by the ML model introduced in Ref. [5]
in the context of model-independent new physics searches in high-energy physics. In that work, the
authors propose an algorithm based on kernel methods with clear advantages compared to similar
neural network implementations in terms of training time while obtaining similar performance. This
feature makes the kernel approach ideal for DQM, where fast training is essential for online analyses.
The paper is organized as follows. In the next section we introduce the experimental setup and the
algorithm input variables. These include a reference data set collected under standard conditions
and smaller samples with anomalous controlled behaviors. The ML model and our core strategy are
then described in Section 3, whereas an overview of the results is given in Section 4. Finally, the last
section is devoted to conclusions and further developments.

2 Experimental setup and data samples

In this work we consider an experimental apparatus consisting of a set of drift tube (DT) chambers
developed and installed at the Legnaro INFN National Laboratory (Fig.1, left). It represents a
reduced-scale version of the ones installed in the CMS experiment at the LHC [6]. The fundamental
element of the detector is a 70 cm long tube with a 4× 2.1 cm2 cross section (Fig.1, bottom right).
Within each tube, an electric field is produced by an anodic wire (+3.6 kV) laid in the center and two
cathodic strips (−1.2 kV) at the sides; an additional pair of strips at an intermediate voltage (+1.8
kV) are placed above and below the wire to improve the field homogeneity. The tubes are filled with
a Ar− CO2 gas mixture (85%− 15%) whose molecules are ionized when charged particles traverse
the sensitive volume. The electrons produced ionizing the gas drift with constant velocity along the
field lines towards the wire, where they are collected. The arrival time is recorded by the front-end
electronics, which amplify the signal and filter noise below a specific threshold (nominal at 100 mV).
The particle’s position (with a left-right ambiguity) is linearly dependent on the drift time. The two
parameters of the linear relation are the drift velocity, known after calibration, and the time pedestal,
which can be provided by an external trigger or by means of a mean-timer technique [7].
A drift tube chamber comprises 64 tubes grouped into four layers of 16 each. The lay-
ers are staggered horizontally by half a cell. From the measurements collected from of
a single chamber, it is thus possible to track the position and slope of the charged parti-
cles crossing the detector by performing a linear fit of the hits from the four layers (Fig.1,
top right). The setup in Legnaro records muons from cosmic rays (at a sea-level rate
of about 1 per minute per cm2) and exploits plastic scintillators as an external trigger.1

1More precisely, the data are acquired continuously at 40 MHz, with the trigger information from the
scintillators added to the data stream
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Figure 1: Left: the experimental apparatus at Legnaro Lab-
oratory, with four drift-tube chambers vertically stacked.
Right: a schematic view of the cell (bottom) and the hit
pattern left by a charged particle crossing (top).

Each detector channel provides an (ab-
solute) time stamp once a signal is
recorded. Since we are interested in
muons crossing the detector, we group
the hits corresponding to such events
and we reconstruct the muon track out
of the observed hits pattern.
The performances of the muons track
reconstruction deteriorate as soon as the
detector conditions are anomalous. The
following list of relevant quantities can
be exploited to assess the quality of the
recorded data:
• Drift times (ti): the four drift times
associated with the muon track.
• Slope (ϕ): the angle formed by the muon track in the plane orthogonal to the anodic wires (mea-
surement plane) with respect to the vertical axis.
• Number of hits (nhits): the number of hits recorded in a time window of one second around the
muon crossing time.
To test the performances of the DQM approach presented in this work, we reproduce two of the
typical failures that occur during detector operations. In particular, we consider the eventuality
of the cathodic strips voltage reduced to 25% of their nominal value (i.e., to −300 V) and that
of the front-end thresholds reduced to 75, 50 and 25 mV, respectively 75%, 50% and 25% of the
nominal value. A dedicated data collection campaign has been launched.2 As a result, a set of data
samples has been collected, one consisting of 3× 105 events being the reference and the other four of
approximately 104 events, each corresponding to one of the anomalous conditions mentioned above.

3 Methodology

Model design. To estimate the likelihood ratio, we train a binary classifier on a reference sample
S0 = {xi}n0

i=1 and on a set of measurements S1 = {xi}n1
i=1 using a weighted logistic loss

ℓ(y, f(x)) =
n

n0
(1− y) log

(
1 + efw(x)

)
+

n

n1
y log

(
1 + e−fw(x)

)
. (1)

with n = n0 + n1 and where y is the class label that takes the zero value for S0 and one for S1.
The model parameters w are going to be learned from the data. The weights n/ny are introduced
to compensate for the data imbalance (n0 ≫ n1) while keeping the statistical advantage of a large
reference sample. The learned classifier fŵ is then obtained by minimizing the average loss over
the training set. By a standard computation, the learned function can be shown to approximate
the likelihood ratio fŵ ≈ f∗(x) = log p(x|1)

p(x|0) (see, for instance, appendix A of Ref. [5]). The
log-likelihood ratio test statistics can then be easily evaluated on the measurements as

tŵ(S1) = 2
∑
x∈S1

fŵ(x). (2)

In this work, we consider a learning algorithm based on kernel methods [8] of the form fw(x) =∑n
i=1 wikσ(x, xi), where kσ(x, xi) = exp (−∥x− x′∥2/2σ2) is the Gaussian kernel function and

the width σ is a hyper-parameter. Kernel methods are universal in the large sample limit [9, 10] but
they scale poorly with data size. For this reason, we consider here Falkon [11], a modern library
which makes use of a number of algorithmic ideas, such as column sub-sampling, and takes full
advantage of GPU hardware to extend the use of kernel methods to large scale scenarios with fast
training and strong statistical guarantees.
Model selection and training. The training is performed by considering the empirical risk based
on Eq. (1) with an added L2 regularization term [12] weighted by a hyper-parameter λ. While the
machine learning model is at its core a binary classifier, we do not monitor typical classification
metrics such as binary accuracy or the AUC, and our metric of interest is the likelihood ratio test
statistics given in Eq. (2). Hyper-parameters are tuned following the prescription given in Ref. [5],

2https://doi.org/10.5281/zenodo.7128223
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which includes a mix of heuristics, statistical optimality and efficiency requirements.
Anomaly detection. The analysis strategy for the detection of anomalies in the measurements is
composed of three steps:
• The distribution of the test statistics under the null (reference) hypothesis is estimated by training
the model multiple times (O(100)) on the reference sample S0 and on different data samples S1 also
following the reference distribution, e.g., anomaly free.
• A single training is performed on the reference S0 and the actual measurements S1 to estimate the
test statistic tŵ(S1) of the measurements.
• The p-value corresponding to t(S1) is computed with respect to the test statistic distribution
under the reference hypothesis, learned in the first step. If a statistically significant deviation from
the reference data is found (for instance with respect to a threshold p-value p∗), the nature of the
discrepancy can be analyzed in feature space by re-weighting the reference sample with the learned
density ratio exp(fŵ), as described in the following section.
If a database of observations characterizing known anomalous behaviors is available, different
strategies can be employed to further characterize anomalous readings. We tested different ML
approaches for this task, among which supervised binary classifiers, multi-class classifiers and
parametrized regression models. These models are trained in a fully supervised fashion to separate
reference data from specific types of anomalies. This step is not discussed in this manuscript and will
be presented in details elsewhere.

4 Results

We present here the results obtained by applying this strategy to the monitoring of DT chambers,
following the steps described in the previous section. Having real measurements at our disposal,
this study represents a simplified but realistic scenario. As stated in 2, the input data is composed
of six features (four drift times, the incoming angle, and the number of hits). For each training, we
consider a reference of n0 = 104 events, sampled from the totality of the available reference data,
and a data sample of n1 = 103 events (corresponding to approximately 10 minutes of data taking).
We pre-process the data by dividing each feature by the standard deviation of the reference data. The
model is trained on a single machine equipped with a NVIDIA Titan Xp GPU with 12 GB of VRAM.
We first look at the full six-dimensional problem. In the left-side plot of Figure 2, we show the
distribution of the likelihood ratio test statistics under the reference hypothesis (S0 and S1 both
anomaly-free) and observe that it is well described by a χ2 distribution (see Ref. [13, 14, 15]). In the
right-side plot of Figure 2, we show the values of the test statistics with different types of anomalous
measurements. The model is able to separate without false negatives the different types of anomalies
in a coherent way. For instance, as the threshold gets lower, the data are recognized as departing more
from the reference. The training time for a single classification step is approximately 1.5 seconds.
We processed ten distinct data samples for each type of anomaly.
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Figure 2: Distribution of the test statistics under the null hypothesis and for the anomalous data in 6D.

We now want to test the model when a given feature, which results to be particularly discriminant
with respect to certain anomalies, is not provided as input. That is the case for nhits with respect
to the threshold anomalies, hence we remove it and perform new experiments in five dimensions.
The distribution of the test statistics is reported in Figure 3. We see that the model is still able to
successfully separate the various cases. In this case, the training time is reduced to approximately 0.5
seconds. To give an approximate but quantitative measure of the worst-case scenario, we estimate the
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Figure 3: Distribution of the test statistics under the null hypothesis and for the anomalous data in 5D.

p-value associated with the anomalous data sample closest to the reference distribution in 5D. By
using a χ2 null distribution (left-side plot in Figure 3) we obtain p ≈ 10−11.
In Figure 4, we show instances of how to characterize potentially anomalous data by looking at
the learned likelihood ratio. These plots are produced by re-weighting the features of the reference
sample by efŵ(x) (evaluated on the reference training data), binning it and taking the ratio with the
same binned reference sample (unweighted).3 This quantity is expected to be approximately one if no
deviations are found in the measurements compared to the reference. We see that the model is able to
successfully distinguish between statistical fluctuations (upper-left plot) and genuine anomalies (all
the other plots).
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Figure 4: Examples of input data and respective learned likelihood ratios. Upper plots are produced
without including nhits among the input features.

5 Conclusions

In this work we propose a fast machine learning approach for data quality monitoring. The algorithm
compares collected measurements with a reference dataset describing the standard detector readout
performing a multidimensional likelihood-ratio hypothesis test. The significance of an eventual
discrepancy in the data is quantified via a frequentist p-value. Some solutions for the location and
characterization of the anomaly in the space of the input features are presented. Those could be
relevant in order to design an automatic tool for the system control that allows to reset the apparatus
to normal condition acting on the specific source of malfunctioning. The model is fast and can be
used for quasi-online monitoring. The performances of the model can be tuned varying the size of
the experimental data to be tested, the algorithm parameters and the computational resources. The
experimental setup used to perform this study is simple but representative of the type of detectors
installed in LHC experiments. A dedicated study tailoring more specific use cases will be performed
in order to fit the requirements for the online deployment.

3We point out that the result of this operation is expected to be close but not identical to taking the ratio of
the binned marginal distributions.
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