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Abstract

Physics-informed neural networks have been widely applied to learn general para-
metric solutions of differential equations. Here, we propose a neural network to
discover parametric eigenvalue and eigenfunction surfaces of quantum systems.
We apply our method to solve the hydrogen molecular ion. This is an ab initio
deep learning method that solves the Schrödinger equation with the Coulomb
potential yielding realistic wavefunctions that include a cusp at the ion positions.
The neural solutions are continuous and differentiable functions of the interatomic
distance and their derivatives are analytically calculated by applying automatic
differentiation. Such a parametric and analytical form of the solutions is useful for
further calculations such as the determination of force fields.

1 Introduction

Physics-informed neural networks (PINNs) have been widely applied recently to study various
kinds of differential equations [9]. Supervised PINNs can be trained on data to learn nonlinear
differential operators [14], discover differential equations [21, 20], and solve inverse problems
[1, 4, 18]. Unsupervised PINNs can be trained without using any labeled data to discover analytical
and differentiable solutions of ordinary [12, 16] or partial differential equations (PDEs) [22, 11], and
eigenvalue problems [7, 19, 13, 8].

In this work we introduce a novel PINN architecture to learn the quantum mechanical wavefunctions
for electrons in molecules. This approach can obtain continuous potential energy surfaces and the
associated parametric wavefunctions. In the physics of solids and molecules, the Coulomb potential
plays a crucial role since it represents the basic interaction between the system’s components, electrons
and ions. This potential is characterized by singularities which yield cusps in the wavefunction
solutions of the Schrödinger equation. Standard numerical approaches consider pseudo-potentials to
avoid this issue by employing an effective potential of the ion screened by core electrons. Although
this is an efficient approach for numerical calculations, this approximation requires the careful choice
and generation of effective potentials to provide consistent wavefunctions and energies; it also omits
the treatment of core electrons, which in some applications are important. Here we show that PINNs
can solve the real Coulomb potential in a simple model, the hydrogen molecular ion H+

2 , thus enabling
ab initio calculations for simple molecules. We expect that the method will be generalizable to more
complicated cases, which is the subject of ongoing work. By exploiting the property of NN’s to
learn general representations, we obtain continuous and analytically differentiable eigenvalues and
wavefunctions that depend on the interatomic distance, which make it feasible to obtain derivatives of
the energy landscape; these derivatives are related to physical observables like forces and vibrational
frequencies.
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Main contributions: i) We propose a novel PINN architecture for solving the Schrödinger equation
for the H+

2 ion, including the singular Coulomb potential. Functions including cusps are explicitly
included by embedding the approximate Linear Combination of Atomic Orbitals (LCAO) solution.
ii) The network computes continuous and analytically differentiable wavefunction and eigenvalue
surfaces for a range of interatomic distances. Being analytical, these solutions can be used to compute
additional physical properties like forces and vibrational frequencies. iii) We obtain accurate solutions
with fast training by embedding physics-inspired features in the solution like inversion symmetry,
and by incorporating the asymptotic behavior through the LCAO approximation.

2 Related work

The optimization of PINNs is achieved by minimizing a loss function constructed by differential
equations that encode the physical principles of a system. Specifically, the loss function may consist
of an equation-driven and a data-driven component [20, 9, 16]. The former depends only on the
neural solutions and their derivatives with respect to the inputs; the derivatives are calculated using
automatic differentiation (autograd). The latter can compare neural predictions to ground truth data
[20] or impose physical laws [16].

Recently, PINNs have been employed to solve quantum eigenvalue problems formulated by the
stationary Schrödinger equation Ĥψ = Eψ, where Ĥ is a known Hamiltonian operator and ψ, E
are, respectively, the unknown wavefunction and energy we seek to obtain. Typically there are two
main deep learning approaches that have been used to solve the Schrödinger equation [3, 15, 6]. The
method introduced in Refs. [7, 8] considers a PINN that predicts both ψ and E. By minimizing a
loss function to satisfy the Schrödinger PDE, the NN approximately calculates eigen-solutions. The
second approach [19, 13] is based on the variational principle. The NN returns only ψ, from which
the eigen-energy is computed as the expectation value ⟨Ĥ⟩ = ⟨ψ|Ĥ|ψ⟩/⟨ψ|ψ⟩ (in Dirac notation),
which is minimized to optimize the NN. In this study we adopt the method used in Ref. [7, 8]. We
generalize this deep learning approach to obtain accurate generalized parametric eigen-solutions,
namely ψ and E as smooth and differentiable functions of the interatomic distance.

3 Ab initio deep learning models

Hydrogen molecular ion: We design a deep NN to obtain the ground state wavefunctions and
energies for the single electron in H+

2 as a function of the interatomic distance. For this we employ a
PINN to solve for the eigenvalues and eigenfunctions of the Hamiltonian operator:

Ĥ = −1

2
∇2 − 1

|r−R1|
− 1

|r−R2|
, (1)

where we use atomic units, r = (x, y, z), and, without loss of generality, the molecule is oriented
along the x-axis, so R1 = −R2 = (R, 0, 0). We seek NN solutions that are continuous functions of
R, and thus we call them generalized parametric neural solutions.

Network architecture: The NN architecture we employ is shown in Fig. 1. The network inputs are r,
the coordinates of the electron, and the parameter R, which determines the geometry of the quantum
system. As Fig. 1 demonstrates, there are several units in the architecture and the forward pass consists
of several branches. The two inputs go through the atomic unit (AU) that returns the hydrogen atomic
s-orbitals ϕ1,2 = s(|r±R|) = e−|r±R| for the left (x = −R) and right (x = R) ions, respectively.
This operation is used for feature-engineering and does not contain trainable parameters. Next, the
approximate LCAO solution, ψLCAO = ϕ1 ± ϕ2, is constructed by passing ϕ1, ϕ2 through the LCAO
unit; we do not provide the normalized ψLCAO because the neural ψ will be normalized after the
network training. Here we focus on the ground state and use the symmetric ψLCAO (the “+” sign); the
extension to antisymmetric solutions (the “−” sign) is straightforward [8]. This approximate solution,
which is accurate as R→ ∞, will be used to build the neural ψ. Though any initial guess is possible,
starting from a physics-based asymptotic solution has obvious advantages. The features ϕ1,2 also pass
through the Basis Unit (BU), which is a multi-layer fully connected feed forward NN (FFNN) that
returns a nonlinear combination of ϕ1 and ϕ2, called N(r, R). This unit respects inversion symmetry
by construction [2]: N(x, y, z, R) =

∑
j wj [Bj(x, y, z, R) +Bj(−x, y, z, R)] + b, where Bj are

the outputs of the neurons in the last hidden layer of the BU, while wj and b indicates a linear output
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Figure 1: Ab initio neural network architecture. In the H+
2 configuration, R is a vector of two triples,

Ri is a single vector describing the position of one nucleus.

layer in the BU. The purpose of this unit is to correct ψLCAO while respecting the inversion symmetry.
Because ψLCAO is increasingly more accurate as R increases, we introduce a gate f(R) that is a small
FFNN, only depending on R, which learns the range in R where N(x, y, z) is important.

The full neural wavefunction is thus:

ψ(r, R) = ψLCAO(r, R) + f(R) ◦N(r, R), (2)

where ◦ indicates the element-wise product.

The neural energy E(R) is the output of a separate FFNN that takes only R as input, and hence is
independent of r as required from physical considerations (the total energy of the molecule does
not depend on the position of the electrons). This unit allows the network to learn a smooth and
differentiable E(R) that can be evaluated at any R. To improve the accuracy of E(R), we perform a
fine-tuning optimization where we freeze the BU and gate (red box in Fig. 1) and train the Energy
unit (EU) alone. Optionally, after the training phase we can explicitly calculate ⟨Ĥ⟩ using the neural
ψ to get a consistent value of the eigen-energy for any desired value of R.

Optimization: The network is optimized by minimizing a physics-informed loss function:

L =
〈(

Ĥψ(ri, Ri)− E(Ri)ψ(ri, Ri)
)2 〉

i
+

〈
ψ(ri, Ri)

2
〉
|ri|>rcut

, (3)

where the brackets denote averaging over the training points. This loss directs the NN to find ψ(r, R)
and E(R) that satisfy the Schrödinger equation with the Hamiltonian in Eq. 1 subject to the boundary
conditions ψ(r, R) → 0 as |r| → ∞. In practice, the second term in Eq. 3, LBC, requires that ψ(r, R)
vanish for any |r| larger than a manually selected cutoff value, rcut.

The architecture used to solve the H+
2 system consists of 2 hidden layers of 16 neurons each for

the BU, one layer of 10 neurons for the gate, and two layers of 32 neurons each for the EU, with a
sigmoid activation for all the hidden neurons. We train the NN using the Adam [10] optimizer with a
learning rate of 8× 10−3. The network is optimized for 5× 103 epochs but we save the model with
the lowest L. For the fine-tuning phase we load the best model and train only the EU using the Adam
optimizer with a learning rate of 10−4.

4 Results

We employ the PINN desscribed above to solve the Schrödinger equation for H+
2 . The training set is

constructed by sampling 106 points in the ranges (x, y, z) ∈ [−18, 18] with a cutoff at rcut = 17.5
and R ∈ [0.2, 3]. The points are randomly sampled at every epoch yielding more robust training
[16, 22]. In Fig. 2(a) we show the loss function during the training and fine-tuning phases, where the
vertical dashed red line separates the two phases. Since LBC does not depend on E it does not change
during the fine tuning. The code is written in pytorch [17] and can be found on github2. The training
takes less than 5 minutes on an NVIDIA Tesla V100 GPU with 256 GB memory.

2https://github.com/mariosmat/PINN_for_quantum_wavefunction_surfaces
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Neural energy potential surfaces and wavefunction: Figures 2 and 3 show the results after training
the NN. Figure 2(b) shows the neural ψ (solid blue) and ψLCAO (dashed red) along the x-axis for two
different values of R indicated by the dashed black lines. The two plots on the right show perspective
3D views of ψ(x, y, 0) for the same two values of R.
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Figure 2: (a) The total loss function L, from Eq.(3), and its components during the training and fine
tuning phases, where the dashed red line separates the two phases. (b) Left: Neural ψ (solid blue)
and ψLCAO (dashed red) along the x-axis for two different R values, with the ionic positions ±R
indicated by the vertical dashed black lines. Right: ψ(x, y, 0) for the same two values of R.

In Fig. 3 the upper left panel shows the total energy of the H+
2 system, namely the sum of the

electronic energy and the classical electrostatic energy of the nuclei (1/2R). For the electronic energy
we compare E(R) coming directly from the PINN, the expectation value ⟨Ĥ⟩ calculated with both
the neural ψ(R) and ψLCAO, and a ground truth reference energy calculated in Ref. [5]. The lower
left panel shows the differences from the reference energy, where we observe that the error in E(R)

is sometimes negative, in violation of the variational principle, while ⟨Ĥ⟩ is never smaller than the
ground truth. The lower right panel shows the gate function, which gives increased weight to the BU
for smaller R as expected. The upper right panel of Fig. 3 shows the force between the ions, obtained
by differentiating the energy with respect toR. SinceE(R) is a continuous and differentiable function
of R, we use autograd to calculate the force (dashed blue line). The other energies are computed
using finite differences. The force from E(R) using finite differences (solid blue line) deviates from
the autograd calculation when the slope of the force is large and thus numerical error is accumulated.
This shows the advantage of using the proposed E(R) that eliminates errors from the numerical
derivatives.
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Figure 3: Left panels: Energy and relative error in atomic units (a.u.), as functions of R. Right
panels: force, dE/dR, and gate function f(R); finite differences are used to calculate the forces in
all the cases except for the dashed blue line where autograd is used.

5 Conclusions

In this study we present a novel deep learning approach to obtain continuous and differentiable para-
metric wavefunctions and potential energy surfaces for molecular systems, using a PINN architecture
for solving the first-principles quantum mechanical equations. We validate this approach by studying
the electronic ground state of H+

2 . Although we presented results only for a simple molecule, the
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proposed architecture is generalizable to other similar systems. The most important advantage of
this approach is the ability to obtain neural-net wavefunctions and energies that are continuous and
differentiable in the parameter space of the nuclear coordinates. Having such a form of the solutions
is useful for further computations like the calculation of forces and vibrational frequencies.

Broader Impact

Solving eigenvalue partial differential equations is an important goal in many scientific fields including
engineering, applied physics, and quantum chemistry. Solving these equations can be extremely
demanding and frequently prohibitive due to the limitations of existing numerical methods. New
technologies and more efficient methods for solving differential equations are crucial to accelerate
progress in scientific research. In this work, we introduced a deep learning framework for solving
eigenvalue partial differential equations for parametric potential functions. The proposed neural
network is able to learn parametric eigenvalue and eigenfunction surfaces, namely neural solutions in
terms of the independent variables and of the modeling parameters. We demonstrated the method’s
efficacy by solving the stationary Schrödinger equation for the hydrogen molecular ion with one
electron. Generalization to more complicated problems is the subject of ongoing research.

Societal and Environmental Impact: We are not aware of any negative social impact from solving
differential equations with neural networks, although, as for any scientific discovery, the results
of using this mathematical tool depend on the intentions of the user. As far as the environment is
concerned, the proposed method can be generalized to provide a wide range of solutions with a single
training. Also, an approximated solution that is embedded in the neural network structure drastically
reduces the training time and thus, the consumption of energy to arrive at the solution. For the specific
problem presented in this work, the training of the NN took less than five minutes on an NVIDIA
Tesla GPU.
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