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Abstract

Gases and plasmas can be modeled in both a statistical sense (as a collection
of discrete particles) and a continuum sense (as a continuous distribution). A
collection of discrete particles is often modeled using a Maxwellian velocity
distribution, which is useful in many scenarios but limited by the assumption of
thermal equilibrium. In this work, we develop an architecture to learn a low-
dimensional, general parameterization of the velocity distribution from scientific
instrument plasma data. Such parameterizations have direct applications in data
compression and simplified downstream learning algorithms. We verify that this
dimensionally-reduced distribution preserves the key underlying physics of the
data after reconstruction, specifically looking at the fluid parameters as derived
from the instrument plasma moments (e.g., density, velocity, temperature). Finally,
we present evidence for an information bottleneck arising from the relationship
between the number of reduced parameters and the quality of reconstructed fluid
parameters. Applying this learned architecture to data compression, we achieved a
30X compression ratio with what were deemed as acceptable losses.

1 Introduction

The field of physics has a long history of utilizing dimensionality reduction methods to distill
data, including but not limited to spherical harmonics, the Fourier Transform, and the wavelet
transform. Here, we present a technique for performing dimensionality reduction on ion counts
distributions from the Fast Plasma Instrument of the Magnetosphere Multiscale mission using a data-
adaptive method powered by neural networks. This has applications to both feeding low-dimensional
parameterizations of the counts distributions into other machine learning algorithms, and the problem
of data compression to reduce transmission volume for space missions. The algorithm presented
here is lossy, and in this work, we present the technique of validating the reconstruction performance
with calculated plasma moments under the argument that preserving the moments also preserves
fluid-level physics, and in turn a degree of scientific validity. Code can be found online under the
MIT license at https://github.com/ddasilva/plasma-compression-neurips-2022.

2 Data

We use data from the Fast Plasma Investigation Dual Ion Spectrometers (FPI/DIS) instrument on
board the Magnetospheric Multiscale (MMS) satellite mission [1] [6]. MMS studies the Earth’s space
environment, specifically studying how magnetic fields and plasmas interact within the context of
Earth’s interaction with the solar wind. We utilize the subset of MMS data from its dayside orbit,
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when the spacecraft were up to 70,080 km (11 Earth radii) away from Earth towards the direction of
the Sun. This region of space is covered by low-density collisionless plasma, generally with fewer
than 50 particles per cm3.

FPI/DIS measures a three-dimensional picture of ion plasma every 150 milliseconds, sensing what
is in effect a histogram of particles over velocity space. More specifically, DIS generates an ion
detection rate C(ϕ, θ, E) at the moving spacecraft location, which is the detection rate of ions within
a wedge of velocity space (in units of counts). C(ϕ, θ, E) is proportional to the phase-space density
f(ϕ, θ, E) through scaling by a calibration factor. In these expressions, ϕ and θ are the azimuth and
elevation look directions in the Geocentric Solar Ecliptic (GSE) coordinate system, and E is the
energy of the particle. The instrument resolution is (Nϕ, Nθ, NE) → (32, 16, 32). The azimuth and
elevation angles are linearly spaced with full 4π-steradian coverage, and the energies are log-spaced
between 10 eV and 30 keV. The training and test data are split 90/10 from all data during Phase 4B of
the mission (November 29, 2018 - April 13, 2019). MMS data is available for free under a Creative
Commons license at https://lasp.colorado.edu/mms/sdc/public/.

3 Methods

We use a patch-based, multi-network autoencoder architecture (Figure 1) to perform dimensionality
reduction on the instrument counts distributions C(ϕ, θ, E). Based on previous work in [2] to remove
compression artifacts from this same data, we use a single-layer hidden network operating on patches
of the 3D structure, using rectified linear unit (ReLU) activations on the hidden and final layers.
Using ReLU in the final layer guarantees the positivity of the output counts, which is a key property
of the data. Advantages of the single-layer architecture over convolutional networks for this type of
data is discussed in [2].

Figure 1: The encoding/decoding steps of the dimensionality reduction method. A patch "slot"
corresponds to a column in the matrix storing all latent representations. Each patch slot (column) is a
latent representation for a single patch. Please note that the algorithm includes a normalization step
to guarantee the preservation of the mean number of counts per energy shell (not illustrated in this
diagram).
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We use data patches of C(ϕ, θ, E) consisting of all look directions and two neighboring energy levels.
The network architecture is duplicated and trained independently between each patch location in
energy space. In other words, a separate but architecturally identical network is trained for each
patch location. This allows each network to tailor itself to specific portions of velocity space. We
define the loss function as the pixel-wise mean squared error between the original and reconstructed
counts, C(ϕ, θ, E) vs C̃(ϕ, θ, E) within the patch. We experimented with using the reconstructed
fluid variables (which can be derived from the counts distributions) in the loss function but these
networks were extremely difficult to train. The network was trained with ADAM optimizer with a
learning rate of 0.001[5]. Finally, we force the mean of the each energy shell E equal the original
energy shell’s mean to ensure the preservation of raw counts:

CE = Energy Shell E from Original Patch C (1)

C̃E = Energy Shell E from Reconstructed Patch Decoder(Encoder(C)) (2)

C̃E
adjusted = C̃E ∗ Mean(CE)

Mean(C̃E)
(3)

Figure 1 illustrates the dimensionality reduction method applied on a per-patch basis. Starting
with a patch selected from the training set, the transform encoder encodes the patch into a latent
representation with dimensional size N (where N is a user-selected parameter). The fully encoded
counts distribution from the autoencoder is thus 16×N, where 16 is the number of patch slots for
the DIS data. The process for decoding is the reverse of encoding: the latent representation is run
through the middle and final layers of the autoencoder network. The decoded representation of each
patch is stored in an array holding the full reconstructed count distribution.

A limitation of this method (and all auto-encoders) is the confined ability to generalize the encoding
process to types of data not found or underrepresented in the training set. This may pose an issue
for "once-in-a-lifetime" observations where-in the corresponds to a very rare (but scientifically
interesting) event in nature. The extent of this limitation is subject to on-going investigation. These
networks were trained on Amazon Web Services (AWS) using a single NVIDIA Tesla T4 GPU over
about 12 hours.

4 Validation and Fluid Variable Information Bottleneck

Since the observed ion count distributions are created from underlying physical processes, we must
ensure that the reconstructed data is also physically consistent. We check how well the dimensionality
reduction is able to preserve fluid variables; this is used as a proxy for how well the final reconstruction
preserves fundamental continuum conservation laws. The fluid variables are themselves moments of
the reconstructed ion velocity distribution, which is in turn a per-pixel scaled version of the counts
distribution modeled by the autoencoder. A dimensionality reduction which performs well to preserve,
e.g., ρ and v⃗ on data will also do well to preserve ∂ρ

∂t +∇ · (ρv⃗) = 0. Therefore, the performance in
reconstructed fluid parameters serves as strong indicator of the ability to preserve continuum-level
physics.

There is mathematical support that strong agreement in fluid variables (moments) leads to agreement
in the distribution function. The result of the Hausdorff moment problem states that if two distributions
f1(ϕ, θ, E) and f2(ϕ, θ, E) have the same moments M (k)

1 = M
(k)
2 for all k = 0, 1, 2, . . . ,∞ then

it is necessarily true that f1 = f2 [3][4] [7]. This is only guaranteed when f1 and f2 are defined
on a bounded space and is not necessarily true for distributions defined on unbounded space. Here,
our velocity spaces are bounded by |v⃗| < c. We note a major limitation of this theorem is that it is
stated in terms of absolute equality for an infinite sequence, and similarly concludes that f1 = f2
exactly. In practice absolute equality is not achievable and therefore the literal interpretation is limited.
However, we believe the intuitive principle of the theorem is still useful and provides a foundation of
mathematical support for the methodology.

The size of the latent representation (N ) for each patch is taken as an independent parameter. For each
N , the performance of the fluid variable reconstruction is evaluated in terms of the fluid-variable-wise
correlation coefficient r2 between original and reconstructed data. Figure 2 shows the r2 vs the
dimensionality reduction fraction (DRF) for the first four fluid variables. We see an information
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bottleneck around a DRF of 0.05-0.10 (10-20X) wherein further dimensionality quickly reduces the
quality of the fluid variables.

Figure 2: Correlation coefficient r2 between the original and reconstructed plasma data (density
and velocity components) as a function of the dimensionality reduction fraction (DRF). The DRF is
defined as the size of the latent representation for each patch relative to the original dimension, with
1.0 indicating no dimensional reduction. We observe that an information bottleneck, which prevents
accurate reconstructions, occurs for dimensional reductions between 10-20x (DRF ≈ 0.05− 0.10).

5 Applications to Data Compression

Potential use cases for this method include reducing the required satellite transmission budget for
observed data. Figure 3 shows that the compression demonstrates strong ability to capture the
energy spread of the distribution as well as transitions between cold and hot plasma in the spectrogram
perspective. Because we preserve the mean counts for each patch, the relative error in the spectrogram
perspective is extremely low.

Figure 3: Demonstration of the compression algorithm in its end-to-end form displaying the orig-
inal ion data and the compressed (reconstructed) ion data. This uses a version of the model
with a latent patch size of N=100 corresponding to DRF=0.098. Quantization is used to trim 6
bits off the fractional part of IEEE 16-bit floating point latent representation, and the GZIP soft-
ware implementing DEFLATE is used for lossless entropy coding. Relative error is computed as
(original− reconstructed)/original.

Features such as bimodal populations (first 10 seconds) and populations skewed with tails extending
to lower energies (about 10-25 seconds in) are preserved. Between 17:41:00 and 17:41:30 the dip in
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the peak of the main population is also well preserved. The background flux of the spectrogram (dark
purple) is sufficiently similar between the original and reconstructed data. Error in the high flux areas
are caused only by quantization in the stored calculated mean.

6 Potential Broader Impact

The method has potential to support other machine learning algorithms, particularly in space physics,
by reducing plasma data to a form with fewer parameters. This makes the data easier to process
and train on. The compression algorithm also has the potential to reduce spaceflight costs for future
space missions, where-in the cost to utilize a radio transmission telemetry network is a major cost
particularly for high data-rate spacecraft. In addition to cost savings, data compression relieves load
on over-congested telemetry networks that may not have bandwidth to spare. The authors believe
that such compression algorithms will benefit both scientific spaceflight mission development as
well as society through greater scientific return. The inherent impact on the broader world is neutral
otherwise, as the algorithm is agnostic to how the data may be used. However, since our application
is specifically for plasma data, it is difficult to imagine how this would negatively impact society and
human relations.
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(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes] We believe the abstract accurately reflects the paper’s
contributions and scope.

(b) Did you describe the limitations of your work? [Yes] We have a paragraph dedicated to
limitations of the method at the end of the "Methods" section, as well as a paragraph
dedicated to discussing imperfections in the compressed spectrogram ("Applications to
Data Compression" section) and how they may affect scientific conclusions.

(c) Did you discuss any potential negative societal impacts of your work? [No] The authors
believe that any proposed negative societal impacts of this work would be a stretch of
the imagination.
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them? [Yes] The authors have read them.

2. If you are including theoretical results...
(a) Did you state the full set of assumptions of all theoretical results? [N/A] Not a

theoretical result
(b) Did you include complete proofs of all theoretical results? [N/A] Not a theoretical

result
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3. If you ran experiments...
(a) Did you include the code, data, and instructions needed to reproduce the main ex-

perimental results (either in the supplemental material or as a URL)? [Yes] Code is
available at a Github location found in the introduction.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] Yes, the data split is discussed int he data section and the hyperpa-
rameters are discussed in the methods section

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes] Figure 2 represents a correlation coefficient that indicates
a metric of error.

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] Yes, comment at the end of the
methods section on how we used 12 hours of training on a single GPU (NVIDIA Tesla
T4) node on AWS.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes] Yes, we cited the

datasets (with URLS to download the data), as well as the papers.
(b) Did you mention the license of the assets? [Yes] Yes. The data is under Creative

Commons
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

There is no supplemental material, but a link to the data is included.
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [No] No consent was requested because the data was produced and
release with the intent to be used by the community.

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [No] There is no data relating to humans where PII
or offensive content applies.

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A] No crowdsourcing or conducted research with human subjects
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A] No crowdsourcing or conducted research
with human subjects

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A] No crowdsourcing or conducted research
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