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Abstract

Real-world phenomena, such as cellular dynamics, electromagnetic wave propa-
gation, and heat diffusion vary with respect to space and time and therefore can
described by partial differential equations (PDEs). We focus on the problem of
finding a dynamic model and parameterization that can generate and match ob-
served time-series data. For this purpose, we introduce Geometric Neural PDE
network (GNPnet), a neural network that learns to match and interpolate mea-
sured phenomenon using an autoregressive framework. GPNnet has several novel
features including a geometric scattering network that leverages spatial problem
structure, and an FEM solver that is incorporated within the network. GPNnet
learns parameters of a PDE via an FEM solver that generates solution values that
are compared with measured phenomenon. By using the adjoint sensitivity method
to differentiate the output loss function, we can train the model end-to-end. We
demonstrate GPNnet by learning the parameters of a simulated wave equation.

1 Introduction

Dynamical systems are encountered in many settings: fluid flow, cellular progressions, electro-
magnetic wave propagation, weather forecasting, financial forecasting, and neutron transport are
just a few applications among many [1],[2],[3] [4]. Physical, practical, and engineering limitations
mean that dynamical systems are measured at discrete time-steps despite an underlying continuous
signal that exists for real-world phenomena. These discrete measurements can be enough to capture
the underlying true dynamics of a given system, but there are scenarios where this is not the case.
Consider, for example, cellular dynamics: due to technological limitations, one can only measure
how a cell progresses in a few discrete time steps; this poses a problem if a measurement is not taken
during the time period when some underlying diseases manifest in the cell’s lifetime [5]. Of course,
there are other situations that may not be as dire, but the example demonstrates many applications
where interpolating or extrapolating from static measurements of a dynamical system is desirable.

To this end, several data driven approaches have been utilized for learning dynamics [6],[7],[5] [8].
Each of these approaches attempt to learn the dynamics of a system by leveraging the power of neural
networks (NNs) with domain knowledge. While fully connected neural networks are promising for
learning dynamics, there have been shortcomings in learning physics [9, 10] because of a lack of
awareness of structure within the data during training. Crucially, there are advantages to incorporating
PDE solvers into NNs. This can both constrain the system outputs to be more physically meaningful,
and can be also be a key component of learning dynamics since most systems vary spatially, in
addition to temporally. Consequently, we introduce a novel NN framework, geometric neural PDE
network (GNPnet), that harnesses the power of NNs in tandem with the geometric structure of the
data and a PDE solver.
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GNPnet is a graph network that leverages the structure of the available measured scientific data via
random walks on a graph, and also incorporates a PDE solver within this framework to generate
data for phenomena that vary with respect to space and time. GNPnet is also a fully differentiable
architecture that can be trained end-to-end via the adjoint method. In recent years, the combination
of deep learning and differential equations has been notable [11, 12, 13, 14, 5]. One aspect of this,
notably seen in neural ODEs [11], is the ability to circumvent automatic differentiation through
the ODE solver by using the adjoint method to implicitly differentiate the loss function and train
the NN. In this setting, the assumption is that there are training datapoints, and the NN outputs the
change in the system over time that is then acted upon by an ODE solver. Our setting is different;
instead, GNPnet learns the dynamical system by predicting PDE parameters, which are then given to
a PDE solver to generate solution data. We then minimize the loss between the predicted solution
data and the ground truth input time-series data. This enables us to learn physical parameters, initial
conditions, or any properties defining the system in consideration. Importantly, we can learn the
dynamics without necessarily having the parameters themselves in our dataset.

2 Details of GNPnet

GNPnet is a NN architecture that leverages the geometric structure of the data to predict PDE
parameters (physical parameters, initial conditions, etc.), and utilizes this information to then generate
and match time-series data. GNPnet is equipped with a geometric scattering transform, a GNN, and
an FEM solver (a widely-used method for solving PDEs). GNPnet takes time-series data as input
graphs whose node features are augmented with geometric scattering features. This augmented graph
data is then fed into a GNN to predict initial conditions or physical parameters governing the system
in consideration. These parameters are then used by an FEM solver to predict the system dynamics.
GNPnet is capable of keeping track of the gradient of the FEM output with respect to the FEM input
by leveraging the adjoint method [15]. This allows GNPnet to be trained end-to-end from the GNN
input through the FEM output such that the predicted dynamics can match the ground truth dynamics
(see the GNPnet schematic in Figure 1). Since the GNN outputs parameters or initial conditions that
govern the system in consideration, in certain problem settings, we can also verify that the outputs are
physically meaningful. In the subsequent section, the components of GNPnet are described in detail.

Figure 1: GNPNet training procedure. Schematic outlining the training process.

2.1 Geometric Scattering Transform

In general, time-series measurements can be defined in the space-time domain as U : Ω× (0, T ) →
Rn. Given a set of measurements{U1, U2...Um |Ui ∈ Rn}, each consisting of n nodes for m time
points/measurements t1, t2, ..., tm, GNPnet first constructs a graph for each measurement Ui at a
corresponding time point ti. GNPnet achieves this by computing a new matrix UiGT

∈ Rn×3, where
the rows represent the set of nodes v1, v2...vn in a given measurement, Ui, and the dimensions of
the coordinates (x, y) ∈ R2 are concatenated with the value g(vi) ∈ R at that node, (x, y, g(vin)).
The graph can then be constructed by using a kernel, broadly represented as K(x, y) = e−||x−y||22/σ ,
which in our setting is K(vi, vj) = e−||vi−vj ||22/σ = GiGT

. Here, (vi, vj) represents pairwise nodes
in the matrix UiGT

.
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In [16] the authors demonstrated the utility of the geometric scattering transform in the context of
graph representations, i.e., geometric scattering features computed on dirac signals placed on a graph,
are capable of capturing multigranular graph structure. Since, then geometric scattering has been used
for various machine learning tasks and shown promise in a variety of applications in deep learning
[17, 18, 19] because of the rich geometric structure that the transform captures.

The geometric scattering transform was introduced in [16] and provides a rich way of describing
signals on graphs and graphs themselves. The scattering transform is based off of diffusion wavelets
[20] of the form Ψj := P2j−1

1/2 − P2j

1/2 where 1/2 := 1
2 (n+

−1) is a matrix which describes the
transition probabilities of a lazy random walker, and j is the scale of the wavelet. Given these wavelets,
we geometric scattering computes an alternating cascade of wavelets and element-wise absolute value
nonlinearities to form Up := Ψjm |Ψjm−1

. . . |Ψj2 |Ψj1 || . . . | for a scattering path p := (j1, . . . , jm).
Given Up, we then compute scattering moments of the form Sp,q =

∑n
i=1 |Up[vi]|q..

In this study, we use three dyadic scales, two layers, and five moments. For this set of hyperparameters,
the geometric scattering transform always outputs p = 20 scattering features for each node, which
are concatenated to the original node features (x, y, g(vim)) of the matrix UiGT

to create the new
set of augmented measurement data: {Ũ1GT

, Ũ2GT
...ŨmGT

|ŨiGT
∈ Rn×p}. From the new set of

measurement data, GNPnet computes a kNN-graph (with k=4) to construct a new set of augmented
graphs{G̃1GT

, G̃2GT
....G̃mGT

|G̃ ∈ Rn×n} that are inputs to the GNN.

2.2 Learning Dynamics

To learn the dynamics of the system in consideration, GNPnet minimizes the discrepancy between the
predicted measurements generated by the PDE solver and the ground truth measurements. Once the
scattering transform is computed, the GNN takes the set of augmented graphs and predicts parameters
or initial conditions that define the system in consideration. An input graph G = (V,E) has nodes
i ∈ V and edges ij ∈ E that define the graph connectivity. It also has a node position matrix with
shape n× 2 of the node feature vector, fi ∈ Rd = (x, y, g(vi), si) contains the spatial coordinates
(x, y), the solution value g(vi) at node vi, and the scattering features si ∈ Rp. Formally, the GNN
learns the system properties by learning the mapping GNN :nxd→ Rn×1 for a given graph such that
each node in a graph has one output value which corresponds to the value of the parameter or initial
condition at that node. The node features are updated through a standard MLP message passing layer,
vi = MLPv(vi,

∑
j eij).

We train GNPnet in an autoregressive manner to learn the dynamics of the predicted system. To
accomplish this, the measurement data must be passed into the GNN chronologically. For an
observed set time series measurements, {U1, U2...Um |Ui ∈ Rn}, the set of augmented graphs
{G̃1GT

, G̃2GT
....G̃mGT

} must be fed in chronological order, such that GNPNet learns the dynamical
process of the full system. The GNN outputs a new matrix Uipred ∈ Rn×1 whose nodes values
represent the physical parameters or initial conditions at the input measurement data at t0. Thus
far, we can summarize the steps that take us from the ground truth measurement Ui at time ti to the
output of the GNN as:

Ui → UiGT
→ K(UiGT

) → GiGT
→ GST (GiGT

) → G̃t
GT → GNN(G̃t

iGT
) → Us (1)

The output of the GNN, Us, (which defines system properties/parameters for a given system) is fed
as input to the PDE solver, which then generates predicted solution values at different time steps. The
network is trained autoregressively by constructing an element-wise mean-squared error loss between
the predicted Ûi

t+1
and the ground truth U t+1

i value for j nodes in a given solution U at the next
t+ 1 time step. The adjoint method is then used to compute the derivatives of the output of the FEM
solver with respect to the NN parameters.

Us → FEM → Û t+1 (2)

L(Û t+1, U t+1) =
1

n

n∑
j=1

(U t+1
j − ˆU t+1

j) (3)

3



∂L

∂Us
∗ ∂Us

∂θ
(4)

3 Experiments

The wave equation is a hyperbolic PDE defined as ∂2u
∂t2 − c2(x)∂

2u
∂x2 = 0, where u is the field value

and c(x) is the wave velocity. We use the wave equation as a toy example to demonstrate the efficacy
of GNPnet. The solution data for the wave equation was generated using a [51 x 51] square mesh
containing 2601 nodes, a spatial domain of [0,1] in the x and y direction, T = 30 time steps, Dirichlet
boundary conditions, u|∂Ω = 0, with the time derivatives and initial condition equal to an arbitrary
constant: u′

0 = u0 = 5. We train GNPnet to match the ground truth dynamics by having the GNN
learn the wave velocity parameter defining the wave equation. The wave velocity parameter used
to generate the data varies spatially and is defined as: c(x, y) = e(−α∗x−α∗y), with 40 parameter
values of α ranging from [2,6]. We ablate GNPnet against a baseline (a single pass of the field values
through our GNN) and GNPnet without geometric scattering. The mean absolute and relative error
along with the cross-correlation between predicted and ground truth wave velocity are shown in Table
1.

Figure 2: Training and validation Loss of GNPNet; predicted versus ground truth plots wave velocities for
different experiments

Table 1: Relative error, absolute error, and cross correlation between ground truth and predicted wave velocity

Experiment Absolute Error Relative Error Cross-correlation

Baseline 1.723E+0 4.666E+1 3.288E-1
No geometric scattering 2.267E-1 4.150E+0 8.522E-1
Geometric scattering (ours) 4.994E-2 5.335E-1 9.893E-1

4 Conclusions

Interpolation and extrapolation of dynamical systems is paramount across disciplines because we
are limited to finite, discrete measurements of continuous systems. To address this challenge, we
propose GNPnet. We equip GNPnet with rich scattering features that exploit the geometry of the
data, and a fully-integrated PDE solver to generate predicted time-series data. Here, we demonstrated
GNPnets’ ability to learn dynamics on the wave equation. As shown in Figure 1, GNPnet is able to
learn the dynamics of the wave equation—the training and validation loss decrease over time—and is
capable of recovering the wave velocity parameter that defines the system. However, it should be
noted that the inversion of a PDE is not always possible, as there could be many parameter sets that
generate a given time series. The autoregressive loss that GNPNet is trained on is capable of finding
parameters that can generate the correct dynamics, and potentially different solutions. In the future,
we hope to test GNPnet on time-series measurements from systems where ground truth parameters
for generations are not known, such as biophysical systems.
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5 Broader Impact
Our method is a general framework for interpolating and extrapolating at different time points for
dynamical systems. This method follows the foot steps of recent works in machine learning that are
focused on leveraging the power of neural networks in the natural sciences. Although more rigorous
testing for this method still remains, we envision this method having a net positive societal impact:
we hope others can build on the concept of intertwining PDEs and neural networks that leverage the
structure of the data in an application-agnostic manner.
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